Skip to main content
Log in

Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A stochastic averaging method for strongly nonlinear oscillators with lightly fractional derivative damping of order α (0<α<1) under combined harmonic and white noise external and (or) parametric excitations is proposed and then applied to study the first passage failure of Duffing oscillator with lightly fractional derivative damping of order 1/2 under combined harmonic and white noise excitations in the case of primary parametric resonance. Numerical results show that the proposed method works very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, K.B.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  4. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  5. Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983)

    Article  MATH  Google Scholar 

  6. Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23(6), 918–925 (1985)

    Article  MATH  Google Scholar 

  7. Koh, C.G., Kelly, J.M.: Application of fractional derivatives to seismic analysis of base-isolated models. Earthq. Eng. Struct. Dyn. 19, 229–241 (1990)

    Article  Google Scholar 

  8. Makris, N., Constantinou, M.C.: Spring-viscous damper systems of combined seismic and vibration isolation. Earthq. Eng. Struct. Dyn. 21, 649–664 (1992)

    Article  Google Scholar 

  9. Shen, K.L., Soong, T.T.: Modeling of viscoelastic dampers for structural applications. ASCE J. Eng. Mech. 121, 694–701 (1995)

    Article  Google Scholar 

  10. Pritz, T.: Analysis of four-parameter fractional derivative model of real solid materials. J. Sound Vib. 195, 103–115 (1996)

    Article  Google Scholar 

  11. Papoulia, K.D., Kelly, J.M.: Visco-hyperelastic model for filled rubbers used in vibration isolation. ASME J. Eng. Mater. Technol. 119, 292–297 (1997)

    Article  Google Scholar 

  12. Rossikhin, Y.A., Shitikova, M.V.: Analysis of nonlinear free vibrations of suspension bridges. J. Sound Vib. 186, 369–393 (1995)

    Article  MATH  Google Scholar 

  13. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  14. Rossikhin, Y.A., Shitikova, M.V.: Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical system with damping modeled by a fractional derivative. J. Eng. Math. 37, 343–362 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rossikhin, Y.A., Shitikova, M.V.: Analysis of free non-linear vibrations of a viscoelastic plate under the condition of different internal resonances. Int. J. Non-Linear Mech. 41, 313–325 (2006)

    Article  MATH  Google Scholar 

  16. Padovan, J., Sawicki, J.T.: Nonlinear vibrations of fractionally damped systems. Nonlinear Dyn. 16, 321–336 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shimizu, N., Zhang, W.: Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int. J. Ser. C 42, 825–837 (1999)

    Google Scholar 

  18. Kempfle, S., Schafer, I., Beyer, H.: Fractional calculus via functional calculus: theory and applications. Nonlinear Dyn. 29, 99–127 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schafer, I., Kempfle, S.: Impulse responses of fractional damped system. Nonlinear Dyn. 38, 61–68 (2004)

    Article  MathSciNet  Google Scholar 

  20. Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M.: Chaotic dynamics of the fractionally damped Duffing equation. Chaos Solitons Fractals 32, 1459–1468 (2007)

    Article  MATH  Google Scholar 

  21. Chen, J.H., Chen, W.C.: Chaotic dynamics of the fractionally damped van del Pol equation. Chaos Solitons Fractals 35, 188–198 (2008)

    Article  Google Scholar 

  22. Gaul, L., Klein, P., Kemple, S.: Impulse response function of an oscillator with fractional derivative in damping description. Mech. Res. Commun. 16(5), 4447–4472 (1989)

    Article  Google Scholar 

  23. Yuan, L.X., Agrawal, O.P.: A numerical scheme for dynamics systems containing fractional derivatives. In: Proceedings of 1998 ASME Design Engineering Technical Conferences, pp. 13–16. Atlanta, GA (2004)

  24. Shokooh, A., Suarez, L.: A comparison of numerical methods applied to a fractional model of damping materials. J. Vib. Control 5, 331–354 (1999)

    Article  Google Scholar 

  25. Zhu, Z.Y., Li, G.G., Cheng, C.J.: A numerical method for fractional integral with application. Appl. Math. Mech. 24, 373–384 (2003)

    Article  MATH  Google Scholar 

  26. Suarez, L., Shokooh, A.: An eigenvector expansion method for the solution of motion containing fractional derivatives. ASME J. App. Mech. 64, 629–635 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li, G.G., Zhu, Z.Y., Cheng, C.J.: Dynamical stability of viscoelastic column with fractional derivative constitutive relation. Appl. Math. Mech. 22, 294–303 (2001)

    Article  MATH  Google Scholar 

  28. Wahi, P., Chatterjee, A.: Averaging for oscillations with light fractional order damping. In: ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 2–6. Chicago, IL (2003)

  29. Wahi, P., Chatterjee, A.: Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn. 38, 3–22 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Spanos, P.D., Zeldin, B.A.: Random vibration of systems with frequency-dependent parameters or fractional derivatives. ASCE J. Eng. Mech. 123, 290–292 (1997)

    Article  Google Scholar 

  31. Rüdinger, F.: Tuned mass damper with fractional derivative damping. Eng. Struct. 28, 1774–1779 (2006)

    Article  Google Scholar 

  32. Agrawal, O.P.: An analytical scheme for stochastic dynamic systems containing fractional derivatives. In: Proceedings of the 1999 ASME Design Engineering Technical Conferences, pp. 12–15. Las Vegas, NV (1999)

  33. Agrawal, O.P.: Stochastic analysis of a 1-D system with fractional damping of order 1/2. J. Vib. Acoust. 124, 454–460 (2002)

    Article  Google Scholar 

  34. Agrawal, O.P.: Analytical solution for stochastic response of a fractionally damped beam. J. Vib. Acoust. 126, 561–566 (2004)

    Article  Google Scholar 

  35. Ye, K., Li, L., Tang, J.X.: Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative. Earthq. Eng. Eng. Vib. 2003(2), 133–139 (2003)

    Google Scholar 

  36. Xu, Z., Chung, Y.K.: Averaging method using generalized harmonic functions for strongly non-linear oscillators. J. Sound Vib. 174, 563–576 (1994)

    Article  MATH  Google Scholar 

  37. Khasminskii, R.Z.: On the averaging principle for Itô stochastic differential equations. Kibernetika 3, 260–279 (1968) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Q. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L.C., Zhu, W.Q. Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn 56, 231–241 (2009). https://doi.org/10.1007/s11071-008-9395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9395-6

Keywords

Navigation