Skip to main content
Log in

Nonlinear analysis of a rub-impact rotor supported by turbulent couple stress fluid film journal bearings under quadratic damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work reports a numerical study undertaken to investigate the dynamic response of a rotor supported by two turbulent flow model journal bearings with nonlinear suspension and lubricated with couple stress fluid under quadratic damping. This may be the first time that analysis of rotor-bearing system considered the quadratic damping effect. The dynamic response of the rotor center and bearing center are studied. The analysis methods employed in this study are inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincaré maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The modeling results provide some useful insights into the design and development of rotor-bearing system for rotating machinery that operates at highly rotational speed and highly nonlinear regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

velocity-related parameter

c :

radial clearance, c=Rr

c p :

dimensionless parameter, \(c_{p}=\frac{k_{s}}{k_{1}}\)

C 1 :

damping coefficient of supported structure

C 2 :

viscous damping of rotor disk

e :

eccentricity, \(e=\sqrt{X^{2}+Y^{2}}\)

f :

friction coefficient between rotor and stator

f e ,f φ :

components of fluid film force in radial and tangential directions

f r ,f t :

resulting bearing forces about the journal center in the radial and tangential directions

f1,f2:

radial impact force and tangential rub force

F x ,F y :

components of fluid film force in X- and Y-directions

R x ,R y :

rub-impact forces in the horizontal and vertical directions

G θ ,G z :

\(\frac{1}{G_{\theta}}=12+0.0260(\mathit{Re}^{*})^{0.8265},\frac{1}{G_{z}}=12+0.0198(\mathit{Re}^{*})^{0.741}\)

g :

acceleration of gravity

K1,K2:

stiffness coefficients of springs supporting bearing housings

K s :

stiffness coefficient of shaft

k c :

radial stiffness of the stator

l :

characteristic length of additives, \(l=(\frac{\eta}{\mu})^{1/2}\)

l * :

dimensionless couple-stress parameter, l *=l/c

L:

bearing length

m,m0:

masses lumped at rotor mid-point and bearing housing mid-point

O m :

center of rotor gravity

O1,O2,O3:

geometric centers of bearing, rotor and journal

p :

pressure distribution in fluid film

R :

inner radius of bearing housing

Re * :

local Reynolds number, \(\mathit{Re}^{*}=\frac{\rho Uh}{\mu}\)

r :

radius of journal

s :

rotational speed ratio, \(s=(\frac{\omega ^{2}}{\omega _{n}^{2}})^{1/2}\)

s 1 :

dimensionless parameter, s 1=(c om c p s 2)1/2

v :

relative slip velocity between rotor and stator, \(v=\sqrt{\dot{x}^{2}+\dot{y}^{2}}\)

X,Y,Z:

horizontal, vertical and axial coordinates x 1,y 1,x 2,y 2 X 1/c,Y 1/c,X 2/c,Y 2/c

α :

dimensionless parameter, \(\alpha =\frac{k_{2}c^{2}}{k_{s}C_{om}}\)

ρ :

mass eccentricity of rotor

φ :

rotational angle (φ=ωt)

ω :

rotational speed of rotor

φ :

attitude angle

θ :

angular position

μ :

oil dynamic viscosity

η :

new material constant peculiar to couple-stress fluid

ε :

eccentricity ratio, ε=e/c

δ :

clearance between rotor and stator

ω n :

natural frequency, (k s /m)1/2

β :

dimensionless unbalance parameter, ρ/c

ξ 1 :

dimensionless parameter, \(\xi_{1}=\frac{c_{1}}{2\sqrt{k_{1}m_{0}}}\)

ξ 2 :

dimensionless parameter, \(\xi_{2}=\frac{c_{2}}{2\sqrt{K_{s}m}}\)

References

  1. Hopf, G., Schuler, D.: Investigations on large turbine bearings working under transitional conditions. J. Tribol. 111, 628–634 (1989)

    Article  Google Scholar 

  2. Mittwollen, N., Glienicke, J.: Operating conditions of multi-lobe journal bearings under high thermal loads. J. Tribol. 112, 330–338 (1990). doi:10.1115/1.2920261

    Article  Google Scholar 

  3. Hashimoto, H., Wada, S., Nojima, K.: Performance characteristics of worn journal bearings in both laminar and turbulent regimes. Part I: steady state characteristics. Am. Soc. Lubr. Eng. Trans. 29(4), 565–571 (1986)

    Google Scholar 

  4. Gardner, W.W., Ulschmid, J.G.: Turbulence effects in two journal bearings applications. ASME J. Lub. Tech. 96, 15–21 (1974)

    Google Scholar 

  5. Capone, G., Russo, M., Russo, R.: Dynamic characteristics and stability of a journal bearing in a non-laminar lubrication regime. Tribol. Int. 20, 255–260 (1987). doi:10.1016/0301-679X(87)90025-9

    Article  Google Scholar 

  6. Kumar, A., Mishra, S.S.: Stability of a rigid rotor in turbulent hydrodynamic worn journal bearings. Wear 193, 25–30 (1996). doi:10.1016/0043-1648(95)06654-3

    Article  Google Scholar 

  7. Hashimoto, H., Wada, S., Nojima, K.: Performance characteristics of worn journal bearings in both laminar and turbulent regimes. Part II: dynamic characteristics. ASLE Trans. 29(4), 572–577 (1986)

    Google Scholar 

  8. Lahmar, M., Haddad, A., Nicolas, D.: An optimized short bearing theory for nonlinear dynamic analysis of turbulent journal bearings. Eur. J. Mech. A, Solids. 19, 151–177 (2000)

    Article  MATH  Google Scholar 

  9. Lin, T.R.: The effects of three-dimensional irregularities on the performance characteristics of turbulent journal bearing. Wear 196, 126–132 (1996). doi:10.1016/0043-1648(95)06884-8

    Article  Google Scholar 

  10. Gordon, J.T., Merchant, H.C.: An asymptotic method for predicting amplitudes of nonlinear wheel shimmy. J. Aircr. 15(3), 155–159 (1978). doi:10.2514/3.58334

    Article  Google Scholar 

  11. Burton, T.D.: Describing function analysis of nonlinear nose gear shimmy. ASME Paper 81-WA/DSC-20 (1981)

  12. Grossman, D.T.: F-15 nose landing gear shimmy, taxi test and correlative analysis, SAE Paper 801239 (1980)

  13. Stokes, V.K.: Couple-stresses in fluids. Phys. Fluids 9, 1709–1715 (1966). doi:10.1063/1.1761925

    Article  Google Scholar 

  14. Lin, J.R.: Squeeze film characteristics of long partial journal bearings lubricated with couple stress fluids. Tribol. Int. 30(1), 53–58 (1997). doi:10.1016/0301-679X(96)00022-9

    Article  Google Scholar 

  15. Das, N.C.: A study of optimum load-bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field. Tribol. Int. 31(7), 393–400 (1998). doi:10.1016/S0301-679X(98)00050-4

    Article  Google Scholar 

  16. Hsu, C.H., Lin, J.R., Chiang, H.L.: Combined effects of couple stresses and surface roughness on the lubrication of short journal bearings. Ind. Lub. Tribol. 55(5), 233–243 (2003)

    Article  Google Scholar 

  17. Lahmar, M.: Elastohydrodynamic analysis of double-layered journal bearings lubricated with couple-stress fluids. Proc. Instr. Mech. Eng. Part J J. Eng. Tribol. 219, 145–171 (2005). doi:10.1243/135065005X9835

    Article  Google Scholar 

  18. Chang-Jian, C.W., Chen, C.K.: Nonlinear dynamic analysis of a flexible rotor supported by micropolar fluid film journal bearings. Int. J. Eng. Sci. 44, 1050–1070 (2006). doi:10.1016/j.ijengsci.2006.06.008

    Article  Google Scholar 

  19. Chang-Jian, C.W., Chen, C.K.: Bifurcation and chaos of a flexible rotor supported by turbulent journal bearings with nonlinear suspension. Proc. Instr. Mech. Eng. Part J J. Eng. Tribol. 220, 549–561 (2006). doi:10.1243/13506501JET167

    Article  Google Scholar 

  20. John, M.V.: Rotordynamics of Turbomachinery. Wiley, New York (1988), pp. 209–217

    Google Scholar 

  21. Trumpler, P.R.: Design of Film Bearings. Macmillan, New York (1966), pp. 129–137

    Google Scholar 

  22. Li, Z.P., Luo, Y.G., Yao, H.L., Wen, B.C.: Nonlinear dynamic study of the elastic rotor-bearing systems with rub-impact fault. J. Northeast. Univ. 23, 980–983 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-Wan Chang-Jian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang-Jian, CW., Chen, CK. Nonlinear analysis of a rub-impact rotor supported by turbulent couple stress fluid film journal bearings under quadratic damping. Nonlinear Dyn 56, 297–314 (2009). https://doi.org/10.1007/s11071-008-9400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9400-0

Keywords

Navigation