Skip to main content
Log in

Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The current work presents a different methodology for modeling the impact between elasto-plastic spheres. Recent finite element results modeling the static deformation of an elasto-plastic sphere are used in conjunction with equations for the variation of kinetic energy to obtain predictions for the coefficient of restitution. A model is also needed to predict the residual deformation of the sphere during rebound, or unloading, of which several are available and compared in this work. The model predicts that a significant amount of energy will be dissipated in the form of plastic deformation such that as the speed at initial impact increases, the coefficient of restitution decreases. This work also derives a new equation for the initial critical speed which causes initial plastic deformation in the sphere that is different than that shown in previously derived equations and is strongly dependant on Poisson’s Ratio. For impacts occurring above this speed, the coefficient of restitution will be less than a value of one. This work also compares the predictions between several models that make significantly different predictions. The results of the current model also compare well with some existing experimental data. Empirical fits to the results are provided for use as a tool to predict the coefficient of restitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diepart, C.P.: Modelling of shot peening residual stresses—practical applications. Mater. Sci. Forum 163-6(2), 457–464 (1994)

    Article  Google Scholar 

  2. Eltobgy, M.S., Ng, E., Elbestawi, M.A.: Three-dimensional elastoplastic finite element model for residual stresses in the shot peening process. Proc. Inst. Mech. Eng., B J. Eng. Manuf. 218(11), 1471–1481 (2004)

    Article  Google Scholar 

  3. Peikenkamp, K.: Modelling of processes of impact in sports. J. Biomech. 22(10), 1069 (1989)

    Article  Google Scholar 

  4. Bowen, C.: Shaping the future of sports equipment. Mater. World 12(5), 24–26 (2004)

    Google Scholar 

  5. Yasaka, T., Hanada, T., Hirayama, H.: Low-velocity projectile impact on spacecraft. Acta Astronaut. 47(10), 763–770 (2000)

    Article  Google Scholar 

  6. Deutschen, N.R., Bowers, E.J., Lankford, J.W.: ASCC: the impact of a silver bullet. AT&T Tech. J. 75(1), 24–34 (1996)

    Google Scholar 

  7. Chang, W.R., Ling, F.F.: Normal impact model of rough surfaces. ASME J. Tribol. 114, 439–447 (1992)

    Article  Google Scholar 

  8. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  Google Scholar 

  9. Bogy, D.B., Stanley, H.M., Donovan, M., Cha, E.: Some critical tribological issues in contact and near-contact recording. Santa Clara, CA (1993)

  10. Poon, C.Y., Bhushan, B.: Nano-asperity contact analysis and surface optimization for magnetic head slider/disk contact. Wear 202(1), 83–98 (1996)

    Article  Google Scholar 

  11. Weidong, H., Bogy, D.B., Honchi, M.: An asperity contact model for the slider air bearing. ASME J. Tribol. 122(2), 436–443 (2000)

    Article  Google Scholar 

  12. Green, I.: A transient dynamic analysis of mechanical seals including asperity contact and face deformation. Tribol. Trans. 45(3), 284–293 (2002)

    Article  Google Scholar 

  13. Sochting, S., Sherrington, I., Lewis, S.D., Roberts, E.W.: An evaluation of the effect of simulated launch vibration on the friction performance and lubrication of ball bearings for space applications. Wear 260(11–12), 1190–1202 (2006)

    Article  Google Scholar 

  14. Qiang, Y., Watanabe, K., Tsurusawa, T., Shiratori, M., Kakino, M., Fujiwara, N.: The examination of the drop impact test method. In: The Ninth Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (IEEE Cat. No. 04CH37543), Las Vegas, NV, USA. IEEE Press, New York (2004)

    Google Scholar 

  15. Wong, E.H., Lim, C.T., Field, J.E., Tan, V.B.C., Shim, V.P.W., Lim, K.M., Seah, S.K.W.: Tackling the drop impact reliability of electronic packaging. In: ASME International Electronic Packaging Technical Conference and Exhibition, Haui, HI (2003)

  16. Marghitu, D.B.: Impact of a planar flexible bar with geometrical discontinuities of the first kind. Phil. Trans. R. Soc. Lond. A 359, 2595–2608 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. ASME J. Tribol. 109(2), 257–263 (1987)

    Article  Google Scholar 

  18. Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact. ASME J. Tribol. 127(2), 343–354 (2005)

    Article  Google Scholar 

  19. Yang, J., Komvopoulos, K.: Impact of a rigid sphere on an elastic homogeneous half-space. ASME J. Tribol. 127(2), 325–330 (2005)

    Article  Google Scholar 

  20. Thornton, C.: Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. J. Appl. Mech. 64(2), 383–386 (1997)

    Article  MATH  Google Scholar 

  21. Wu, C.-Y., Li, L.-Y., Thornton, C.: Energy dissipation during normal impact of elastic and elastic-plastic spheres. Int. J. Impact Eng. 32(1–4), 593–604 (2005)

    Article  Google Scholar 

  22. Li, L.Y., Wu, C.Y., Thornton, C.: A theoretical model for the contact of elastoplastic bodies. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 216(4), 421–431 (2002)

    Article  Google Scholar 

  23. Weir, G., Tallon, S.: The coefficient of restitution for normal incident, low velocity particle impacts. Chem. Eng. Sci. 60(13), 3637 (2005)

    Article  Google Scholar 

  24. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  25. Vu-Quoc, L., Zhang, X.: An elastoplastic contact force-displacement model in the normal direction: displacement-driven version. Proc. R. Soc. Lond. A 455(1991), 4013–4044 (1999)

    Article  MATH  Google Scholar 

  26. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  27. Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. ASME J. Appl. Mech. 69(5), 657–662 (2002)

    Article  MATH  Google Scholar 

  28. Green, I.: Poisson ratio effects and critical values in spherical and cylindrical Hertzian contacts. Int. J. Appl. Mech. Eng. 10(3), 451–462 (2005)

    Google Scholar 

  29. Quicksall, J.J., Jackson, R.L., Green, I.: Elasto-plastic hemispherical contact models for various mechanical properties. Proc. Inst. Mech. Eng., J J. Eng. Trib. 218(4), 313–322 (2004)

    Article  Google Scholar 

  30. Chaudhri, M.M., Hutchings, I.M., Makin, P.L.: Plastic compression of spheres. Philos. Mag. 49(4), 493–503 (1984)

    Article  Google Scholar 

  31. Johnson, K.L.: An experimental determination of the contact stresses between plastically deformed cylinders and spheres. In: Engineering Plasticity. Cambridge University Press, Cambridge (1968)

    Google Scholar 

  32. Zhao, Y., Maletta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. ASME J. Tribol. 122(1), 86–93 (2000)

    Article  Google Scholar 

  33. Wu, C.Y., Li, L.Y., Thornton, C.: Rebound behaviour of spheres for plastic impacts. Int. J. Impact Eng. 28, 929–946 (2003)

    Article  Google Scholar 

  34. Etsion, I., Kligerman, Y., Kadin, Y.: Unloading of an elastic-plastic loaded spherical contact. Int. J. Solids Struct. 42(13), 3716–3729 (2005)

    Article  MATH  Google Scholar 

  35. Jackson, R.L., Chusoipin, I., Green, I.: A finite element study of the residual stress and strain formation in spherical contacts. ASME J. Tribol. 127(3), 484–493 (2005)

    Article  Google Scholar 

  36. Kharaz, A.H., Gorham, D.A.: A study of the restitution coefficient in elastic-plastic impact. Philos. Mag. Lett. 80(8), 549–559 (2000)

    Article  Google Scholar 

  37. Shankar, S., Mayuram, M.M.: Effect of strain hardening in elastic-plastic transition behavior in a hemisphere in contact with a rigid flat. Int. J. Solids Struct. 45(10), 3009–3020 (2008)

    Article  MATH  Google Scholar 

  38. Jones, N.: Structural Impact. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  39. Minamoto, H., Seifried, R., Eberhard, P., Toyoda, J., Kawamura, S.: Influence of strain rate sensitivity on multibody impact. In: Proceedings of the 56th Tokai Branch Regular Meeting of the Japan Society of Mechanical Engineers, 073-1(2007-3), pp. 51–52 (2007) (in Japanese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, R.L., Green, I. & Marghitu, D.B. Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn 60, 217–229 (2010). https://doi.org/10.1007/s11071-009-9591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9591-z

Keywords

Navigation