Skip to main content
Log in

Robust control of flexible-joint robots using voltage control strategy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

So far, control of robot manipulators has frequently been developed based on the torque-control strategy. However, two drawbacks may occur. First, torque-control laws are inherently involved in complexity of the manipulator dynamics characterized by nonlinearity, largeness of model, coupling, uncertainty and joint flexibility. Second, actuator dynamics may be excluded from the controller design. The novelty of this paper is the use of voltage control strategy to develop robust tracking control of electrically driven flexible-joint robot manipulators. In addition, a novel method of uncertainty estimation is introduced to obtain the control law. The proposed control approach has important advantages over the torque-control approaches due to being free of manipulator dynamics. It is computationally simple, decoupled, well-behaved and has a fast response. The control design includes two interior loops; the inner loop controls the motor position and the outer loop controls the joint position. Stability analysis is presented and performance of the control system is evaluated. Effectiveness of the proposed control approach is demonstrated by simulations using a three-joint articulated flexible-joint robot driven by permanent magnet dc motors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sweet, L.M., Good, M.C.: Redefinition of the robot motion control problem. IEEE Control Syst. Mag. 5(3), 18–24 (1985)

    Article  Google Scholar 

  2. Brogliato, B., Ortega, R., Lozano, R.: Global tracking controllers for flexible-joint manipulators: a comparative study. Automatica 31(7), 41–956 (1995)

    Article  MathSciNet  Google Scholar 

  3. Tomei, P.: A simple PD controller for robots with elastic joints. IEEE Trans. Autom. Control 36(10), 1208–1213 (1991)

    Article  MathSciNet  Google Scholar 

  4. Luca, A.D., Isidori, A., Nicolo, F.: Control of robot arm with elastic joints via nonlinear dynamic feedback. In: The 24th Conf. Decision Contr., Ft. Lauderdale, FL, pp. 1671–1679 (1985)

    Google Scholar 

  5. Spong, M.W., Khorasani, K., Kokotovic, P.V.: An integral manifold approach to the feedback control of flexible joint robots. IEEE J. Robot. Autom. RA-3, 291–300 (1987)

    Article  Google Scholar 

  6. Marino, R., Nicosia, S.: Singular perturbation techniques in the adaptive control of elastic robots. In: The IFAC Symp. Robot Contr., Barcelona, Spain (1985)

    Google Scholar 

  7. Spong, M.W.: Modeling and control of elastic joint robots. ASME J. Dyn. Syst. Meas. Control 109, 310–319 (1987)

    Article  MATH  Google Scholar 

  8. Wilson, G.A.: Robust tracking of elastic joint manipulators using sliding mode control. Trans. Inst. Meas. Control 16(2), 99–107 (1994). doi:10.1177/014233129401600206

    Article  Google Scholar 

  9. Spong, M.W.: Adaptive control of flexible joint manipulators: comments on two papers. Automatica 31(4), 585–590 (1985)

    Article  MathSciNet  Google Scholar 

  10. Chang, L.L., Chuan, C.C.: Rigid model-based fuzzy control of flexible-joint manipulators. J. Intell. Robot. Syst. 13(2), 107–126 (1995). doi:10.1007/BF01254847

    Article  Google Scholar 

  11. Wang, D.: A simple iterative learning controller for manipulators with flexible joints. Automatica 31(9), 1341–1344 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zeman, V., Patel, R.V., Khorasani, K.: Control of a flexible-joint robot using neural networks. IEEE Trans. Control Syst. Technol. 5(4), 453–462 (1997). doi:10.1109/87.595927

    Article  Google Scholar 

  13. Kugi, A., Ott, C., Albu-Schaffer, A., Hirzinger, G.: On the passivity-based impedance control of flexible joint robots. IEEE Trans. Robot. Autom. 24(2), 416–429 (2008). doi:10.1109/TRO.2008.915438

    Google Scholar 

  14. Talole, E., Kolhe, P., Phadke, B.: Extended state observer based control of flexible joint system with experimental validation. IEEE Trans. Ind. Electron. (2009). doi:10.1109/TIE.2009.2029528

    MATH  Google Scholar 

  15. Youcef-Toumi, K., Shortlidge, C.: Control of robot manipulators using time delay. In: IEEE Int. Conf. on Robotics and Automation, Sacramento, CA (1991)

    Google Scholar 

  16. Talole, S.E., Phadke, S.B.: Model following sliding mode control based on uncertainty and disturbance estimator. ASME J. Dyn. Syst. Meas. Control 130, 1–5 (2008)

    Article  Google Scholar 

  17. Marino, R., Nicosia, S.: Singular perturbation techniques in the adaptive control of elastic robots. Presented at the IFAC Symp. Robot Contr., Barcelona, Spain, 1985

  18. Tomei, P.: An observer for flexible joint robots. IEEE Trans. Autom. Control 35(6), 739–743 (1990). doi:10.1109/9.53558

    Article  MATH  MathSciNet  Google Scholar 

  19. De Luca, A., Lanari, L.: Robots with elastic joints are linearizable via dynamic feedback. In: 34th IEEE Conf. on Decision and Control, New Orleans, LA (1995)

    Google Scholar 

  20. Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators. IEEE Press, New York (1996)

    MATH  Google Scholar 

  21. Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control for rigid robots. IEEE Control Syst. Mag. 11, 24–30 (1991)

    Article  Google Scholar 

  22. Cheah, C.C., Hirano, M., Kawamura, S., Arimoto, S.: Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans. Robot. Autom. 19(4), 692–702 (2003)

    Article  Google Scholar 

  23. Fateh, M.M., Soltanpour, M.R.: Robust task-space control of robot manipulators under imperfect transformation of control space. Int. J. Innov. Comput. Inf. Control 5(11A), 3949–3960 (2009)

    Google Scholar 

  24. Fateh, M.M.: Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn. 61(4), 655–666 (2010). doi:10.1007/s11071-010-9677-7

    Article  MATH  MathSciNet  Google Scholar 

  25. Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control. Autom. Syst. 6(5), 702–712 (2008)

    Google Scholar 

  26. Fateh, M.M.: Robust voltage control of electrical manipulators in task-space. Int. J. Innov. Comput. Inf. Control 6(6), 2691–2700 (2010)

    Google Scholar 

  27. Fateh, M.M.: Robust impedance control of a hydraulic suspension system. Int. J. Robust Nonlinear Control 20(8), 858–872 (2010). doi:10.1002/rnc.1473

    MathSciNet  Google Scholar 

  28. Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamics systems. IEEE Trans. Autom. Control 26, 1139–1144 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Networks, Perth, WA, Australia (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Fateh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fateh, M.M. Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn 67, 1525–1537 (2012). https://doi.org/10.1007/s11071-011-0086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0086-3

Keywords

Navigation