Skip to main content
Log in

On the modelling of dynamic structures with discontinuities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A method of simulation is developed for studying the dynamics of the structures with discontinuities using Matlab–Simulink. The concept of dynamic compliance is used for modeling the continuous elements of the structure and the local discontinuity is modeled as nonlinear feedback. As an example, a one-dimensional model of cracked bar under harmonic loading is considered for the simulation purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Actis, R.L., Dimarogonas, A.D.: Non-linear effects due to closing cracks in vibrating beams. In: 12th ASME Conference on Mechanical Engineering, Vibration and Noise, Montreal, Canada, 17–20 September 1989, pp. 99–104. ASME, New York (1989)

    Google Scholar 

  2. Qian, G., Gu, S., Jiang, J.: The dynamic behaviour and crack detection of a beam with a crack. J. Sound Vib. 138(2), 233–243 (1990)

    Article  Google Scholar 

  3. Ruotolo, R., Surace, C., Crespo, P., Storer, D.: Harmonic analysis of the vibrations of a cantilevered beam with a closing crack. Comput. Struct. 61(6), 1057–1074 (1996)

    Article  MATH  Google Scholar 

  4. Lamonaca, B.G., Valente, C., Brancaleoni, F.: Crack identification in nonlinear vibrating beams. Proc SPIE 3089(2), 1808–1814 (1997)

    Google Scholar 

  5. Andreaus, U., Casini, P., Vestroni, F.: Non-linear dynamics of a cracked cantilever beam under harmonic excitation. Int. J. Non-Linear Mech. 42(3), 566–575 (2007)

    Article  Google Scholar 

  6. Gudmundson, P.: The dynamic behaviour of slender structures with cross-sectional cracks. J. Mech. Phys. Solids 31(4), 329–345 (1983)

    Article  MATH  Google Scholar 

  7. Krawczuk, M., Ostachowicz, W.: Forced vibration of a cantilever Timoshenko beam with a closing crack. In: Proc. of ISMA 19, Luven, Belgium, vol. 3, pp. 1067–1078 (1994)

    Google Scholar 

  8. Friswell, M.I., Penny, J.E.T.: A simple nonlinear model of a cracked beam. In: Proceedings of 10th International Modal Analysis Conference, San Diego, California, pp. 516–520 (1992)

    Google Scholar 

  9. Shen, M.-H., Chu, Y.C.: Vibration of beam with a fatigue crack. Comput. Struct. 45, 79–93 (1992)

    Article  Google Scholar 

  10. Brandon, J.A., Abraham, O.N.L.: The modelling of opening and closing of crack. J. Vib. Acoust. 117, 370–377 (1995)

    Article  Google Scholar 

  11. Sundermeyer, J.N., Weaver, R.L.: On crack identification and characterization in a beam by non-linear vibration analysis. J. Sound Vib. 183(5), 857–871 (1995)

    Article  MATH  Google Scholar 

  12. Chati, M., Rand, R., Mukherjee, S.: Modal analysis of a cracked beam. J. Sound Vib. 207(2), 249–270 (1997)

    Article  Google Scholar 

  13. Barr, A.D.S.: An extension of the Hu-Washizu variational principle in linear elasticity for dynamic problems. J. Appl. Mech. 33, 465 (1966)

    Article  Google Scholar 

  14. Chondros, T.G., Dimarogonas, A.D., Yao, J.: Longitudinal vibration of a bar with a breathing crack. Eng. Fract. Mech. 61(5–6), 503–518 (1998)

    Article  Google Scholar 

  15. Chu, Y.C., Shen, M.-H.H.: Analysis of forced bilinear oscillators and the application to cracked beam dynamics. AIAA J. 30(10), 2512–2519 (1992)

    Article  MATH  Google Scholar 

  16. Rivola, A., White, P.R.: Bispectral analysis of the bilinear oscillator with application to the detection of fatigue cracks. J. Sound Vib. 216(5), 889–910 (1998)

    Article  Google Scholar 

  17. Cheng, S.M., Swamidas, A.S.J., Wu, X.J., Wallace, W.: Vibrational response of a beam with a breathing crack. J. Sound Vib. 225(1), 201–208 (1999)

    Article  Google Scholar 

  18. Tsyfansky, S.L., Beresnevich, V.I.: Non-linear vibration method or detection of fatigue cracks in aircraft wings. J. Sound Vib. 236(1), 49–60 (2000)

    Article  Google Scholar 

  19. Pugno, N., Surace, C., Ruotolo, R.: Evaluation of the non-linear dynamic response to harmonic excitation of a beam with several breathing cracks. J. Sound Vib. 235(5), 749–762 (2000)

    Article  Google Scholar 

  20. Matveev, V.V., Bovsunovsky, A.P.: Vibration-based diagnostic of fatigue damage of beam-like structures. J. Sound Vib. 249(1), 23–40 (2002)

    Article  Google Scholar 

  21. Douka, E., Hadjileontiadis, L.J.: Time-frequency analysis of the free vibration response of a beam with a breathing crack. NDT E Int. 38(1), 3–10 (2005)

    Article  Google Scholar 

  22. Loutridis, S., Douka, E., Hadjileontiadis, L.J.: Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency. NDT E Int. 38(5), 411–419 (2005)

    Article  Google Scholar 

  23. Morassi, A.: Crack-induced changes in eigenparameters of beam structures. J. Eng. Mech. 119(9), 1798–1803 (1993)

    Article  Google Scholar 

  24. Hu, J., Liang, R.Y.: An integrated approach to detection of cracks using vibration characteristics. J. Franklin Inst. 330(5), 841–853 (1993)

    Article  MATH  Google Scholar 

  25. Grabowska, J., Krawczuk, M.: Identification of discontinuities in composite rods and beams based on lamb wave propagation. Key Eng. Mater. 293–294, 517–524 (2005)

    Article  Google Scholar 

  26. Keskinen, E., Kuokkala, V.-T., Vuoristo, T., Martikainen, M.: Multi-body wave analysis of axially elastic rod systems. J. Multi-body Dyn. 417–428 (2007)

  27. Solodov, I.Y.: Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36(1–5), 383–390 (1998)

    Article  Google Scholar 

  28. Babitsky, V.: Theory of Vibro-impact Systems and Applications. Springer, Berlin (1998) (Revised translation from Russian, Nauka, Moscow, 1978)

    MATH  Google Scholar 

  29. Hiwarkar, V., Babitsky, V., Silberschmidt, V.: Damage assessment of a cracked bar: effect of material nonlinearity on vibro-impact response. Key Eng. Mater. 413–414, 237–244 (2009)

    Article  Google Scholar 

  30. Panovko, Y.G.: Internal Damping During Oscillation of Elastic Systems. Fizmatgiz, Moscow (1960) (in Russian)

    Google Scholar 

  31. Babakov, I.M.: Theory of Vibrations. Nauka, Moscow (1968) (in Russian)

    Google Scholar 

  32. Ewins, D.: Modal Testing: Theory and Practice. Research Studies Press. Wiley, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Babitsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiwarkar, V.R., Babitsky, V.I. & Silberschmidt, V.V. On the modelling of dynamic structures with discontinuities. Nonlinear Dyn 67, 2651–2669 (2012). https://doi.org/10.1007/s11071-011-0178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0178-0

Keywords

Navigation