Skip to main content
Log in

Nonlinear vibrations of blade with varying rotating speed

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the nonlinear dynamic responses of the rotating blade with varying rotating speed under high-temperature supersonic gas flow. The varying rotating speed and centrifugal force are considered during the establishment of the analytical model of the rotating blade. The aerodynamic load is determined using first-order piston theory. The rotating blade is treated as a pretwist, presetting, thin-walled rotating cantilever beam. Using the isotropic constitutive law and Hamilton’s principle, the nonlinear partial differential governing equation of motion is derived for the pretwist, presetting, thin-walled rotating beam. Based on the obtained governing equation of motion, Galerkin’s approach is applied to obtain a two-degree-of-freedom nonlinear system. From the resulting ordinary equation, the method of multiple scales is exploited to derive the four-dimensional averaged equation for the case of 1:1 internal resonance and primary resonance. Numerical simulations are performed to study the nonlinear dynamic response of the rotating blade. In summary, numerical studies suggest that periodic motions and chaotic motions exist in the nonlinear vibrations of the rotating blade with varying speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carnegie, W.: Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods. J. Mech. Eng. Sci. 1, 235–240 (1959)

    Article  Google Scholar 

  2. Rao, J.S., Carnegie, W.: Solution of the equations of motion of coupled bending-bending-torsion vibrations of turbine blades by the method of Ritz–Galerkin. Int. J. Mech. Sci. 12, 875–882 (1970)

    Article  MATH  Google Scholar 

  3. Anderson, G.L.: On the extensional and flexural vibrations of rotating bars. Int. J. Non-Linear Mech. 10, 223–236 (1975)

    Article  MATH  Google Scholar 

  4. Rao, J.S., Banerjee, S.: Coupled bending-torsional vibrations of rotating cantilever blades-method of polynomial frequency equation. Mech. Mach. Theory 12, 271–280 (1977)

    Article  Google Scholar 

  5. Swamlnathan, M., Rao, J.S.: Vibration of rotating, pre-twisted and tapered blades. Mech. Mach. Theory 12, 331–337 (1977)

    Article  Google Scholar 

  6. Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Coupled bending-bending vibrations of pre-twisted cantilever blading allowing for shear deflection and rotary inertia by the Reissner method. Int. J. Mech. Sci. 23, 517–530 (1981)

    Article  MATH  Google Scholar 

  7. Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Coupled bending-torsion vibrations of rotating blades of asymmetric aerofoil cross section with allowance for shear deflection and rotary inertia by use of the Reissner method. J. Sound Vib. 75, 17–36 (1981)

    Article  MATH  Google Scholar 

  8. Chen, L.W., Chen, C.L.: Vibration and stability of cracked thick rotating blades. Comput. Struct. 28, 67–74 (1988)

    Article  Google Scholar 

  9. Wang, J.H., Shieh, W.L.: The influence of a variable friction coefficient on the dynamic behavior of a blade with a friction damper. J. Sound Vib. 149, 137–145 (1991)

    Article  Google Scholar 

  10. Chen, L.W., Jeng, C.H.: Vibrational analyses of cracked pre-twisted blades. Comput. Struct. 46, 133–140 (1993)

    Article  Google Scholar 

  11. Chen, L.W., Peng, W.K.: Dynamic stability of rotating blades with geometric non-linearity. J. Sound Vib. 187, 421–433 (1995)

    Article  Google Scholar 

  12. Yoo, H.H., Kwak, J.Y., Chung, J.: Vibration analysis of rotating pre-twisted blades with a concentrated mass. J. Sound Vib. 240, 891–908 (2001)

    Article  Google Scholar 

  13. Lin, C.Y., Chen, L.W.: Dynamic stability of rotating pre-twisted blades with a constrained damping layer. Compos. Struct. 61, 235–245 (2003)

    Article  Google Scholar 

  14. Sinha, S.K.: Dynamic characteristics of a flexible bladed-rotor with Coulomb damping due to tip-rub. J. Sound Vib. 273, 875–919 (2004)

    Article  Google Scholar 

  15. Fazelzadeh, S.A., Malekzadeh, P., Zahedinejad, P., Hosseini, M.: Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method. J. Sound Vib. 306, 333–348 (2007)

    Article  Google Scholar 

  16. Liu, T.R., Ren, Y.S.: Vibration of wind turbine blade modeled as composite thin-walled closed-section structure. Adv. Mater. Res. 129–131, 23–27 (2010)

    Google Scholar 

  17. Young, T.H.: Dynamic response of a pretwisted, tapered beam with non-constant rotating speed. J. Sound Vib. 150, 435–446 (1991)

    Article  Google Scholar 

  18. Oh, S.Y., Song, O., Librescu, L.: Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams. Int. J. Solids Struct. 40, 1203–1224 (2003)

    Article  MATH  Google Scholar 

  19. Turkalj, G., Brnic, J., Jasna, P.O.: Large rotation analysis of elastic thin-walled beam-type structures using ESA approach. Comput. Struct. 81, 1851–1864 (2003)

    Article  Google Scholar 

  20. Mitra, M., Gopalakrishnan, S., Seetharama Bhat, M.: A new super convergent thin walled composite beam element for analysis of box beam structures. Int. J. Solids Struct. 41, 1491–1518 (2004)

    Article  MATH  Google Scholar 

  21. Yang, J.B., Jiang, L.J., Chen, D.C.: Dynamic modelling and control of a rotating Euler–Bernoulli beam. J. Sound Vib. 274, 863–875 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Librescu, L., Oh, S.Y., Song, O.: Spinning thin-walled beams made of functionally graded materials: modeling, vibration and instability. Eur. J. Mech. A, Solids 23, 499–515 (2004)

    Article  MATH  Google Scholar 

  23. Yoo, H.H., Lee, S.H., Shin, S.H.: Flapwise bending vibration analysis of rotating multi-layered composite beams. J. Sound Vib. 286, 745–761 (2005)

    Article  Google Scholar 

  24. Hamdan, M.N., El Sinawib, A.H.: On the non-linear vibrations of an inextensible rotating arm with setting angle and flexible hub. J. Sound Vib. 281, 375–398 (2005)

    Article  Google Scholar 

  25. Jarrar, F.S.M., Hamdan, M.N.: Nonlinear vibrations and buckling of a flexible rotating beam: a prescribed torque approach. Mech. Mach. Theory 42, 919–939 (2007)

    Article  MATH  Google Scholar 

  26. Choi, S.C., Park, J.S., Kim, J.H.: Vibration control of pre-twisted rotating composite thin-walled beams with piezoelectric fiber composites. J. Sound Vib. 300, 176–196 (2007)

    Article  Google Scholar 

  27. Lin, S.M.: PD control of a rotating smart beam with an elastic root. J. Sound Vib. 312, 109–124 (2008)

    Article  Google Scholar 

  28. Piovan, M.T., Sampaio, R.: A study on the dynamics of rotating beams with functionally graded properties. J. Sound Vib. 327, 134–143 (2009)

    Article  Google Scholar 

  29. Vadiraja, D.N., Sahasrabudhe, A.D.: Vibration analysis and optimal control of rotating pre-twisted thin-walled beams using MFC actuators and sensors. Thin-Walled Struct. 47, 555–567 (2009)

    Article  Google Scholar 

  30. Chandiramani, N.K.: Active control of a piezo-composite rotating beam using coupled plant dynamics. J. Sound Vib. 329, 2716–2737 (2010)

    Article  Google Scholar 

  31. Younesian, D., Esmailzadeh, E.: Vibration suppression of rotating beams using time-varying internal tensile force. J. Sound Vib. 330, 308–320 (2011)

    Article  Google Scholar 

  32. Yao, M.H., Zhang, W.: Multi-pulse Shilnikov orbits and chaotic dynamics for nonlinear nonplanar motion of a cantilever beam. Int. J. Bifurc. Chaos 15, 3923–3952 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, W.: Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam. Chaos Solitons Fractals 26, 731–745 (2005)

    Article  MATH  Google Scholar 

  34. Zhang, W., Yao, M.H.: Theories of multi-pulse global bifurcations for high-dimensional systems and applications to cantilever beam. Int. J. Mod. Phys. B 22, 4089–4141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, W., Yao, M.H., Zhang, J.H.: Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam. J. Sound Vib. 319, 541–569 (2009)

    Article  Google Scholar 

  36. Zhang, W., Yang, X.L.: Transverse nonlinear vibrations of a circular spinning disk with varying rotating speed. Sci. China Ser. G, Phys. Mech. Astron. 53, 1536–1553 (2010)

    Article  Google Scholar 

  37. Lai, S.K., Lim, C.W., Lin, Z., Zhang, W.: Analytical analysis for large-amplitude oscillation of a rotational pendulum system. Appl. Math. Comput. 217, 6115–6124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liew, K.M., Lim, C.W.: A global continuum Ritz formulation for flexural vibration of pretwisted trapezoidal plates with one edge built in. Comput. Methods Appl. Mech. Eng. 114, 233–247 (1994)

    Article  Google Scholar 

  39. Lim, C.W., Liew, K.M.: Vibration of pretwisted cantilever trapezoidal symmetric laminates. Acta Mech. 111, 193–208 (1995)

    Article  MATH  Google Scholar 

  40. Lim, C.W.: A spiral model for bending of nonlinearly pretwisted helicoidal structures with lateral loading. Int. J. Solids Struct. 40, 4257–4279 (2003)

    Article  MATH  Google Scholar 

  41. Librescu, L., Song, O.: Thin-Walled Composite Beams. Springer, Berlin (2006)

    MATH  Google Scholar 

  42. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, M.H., Chen, Y.P. & Zhang, W. Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn 68, 487–504 (2012). https://doi.org/10.1007/s11071-011-0231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0231-z

Keywords

Navigation