Skip to main content
Log in

Decentralized direct adaptive fuzzy control of robots using voltage control strategy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Decentralized control is the most favorite control of robot manipulators due to computational simplicity and ease of implementation. Beside that, adaptive fuzzy control efficiently controls uncertain nonlinear systems. These motivate us to design a decentralized fuzzy controller. However, there are some challenging problems to guarantee stability. The state-space model of the robotic system including the robot manipulator and motors is in a noncompanion form, multivariable, highly nonlinear, and heavily coupled with a variable input gain matrix. For this purpose, adaptive fuzzy control may use all variable states. As a result, it suffers from computational burden. To overcome the problems, we present a novel decentralized Direct Adaptive Fuzzy Control (DAFC) of electrically driven robot manipulators using the voltage control strategy. The proposed DAFC is simple, in a decentralized structure with high-accuracy response, robust tracking performance, and guaranteed stability. Instead of all state variables, only the tracking error of every joint and its derivative are given as the inputs of the controller. The proposed DAFC is simulated on a SCARA robot driven by permanent magnet dc motors. Simulation results verify superiority of the decentralized DAFC to a decentralized PD-fuzzy controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Isidori, A.: Nonlinear Control Systems. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  2. Shen, Y., Cai, W.J., Li, S.: Multivariable process control: decentralized, decoupling, or sparse. Ind. Eng. Chem. Res. 49, 761–771 (2010)

    Article  Google Scholar 

  3. Hsua, S.H., Fua, L.C.: A fully adaptive decentralized control of robot manipulators. Automatica 42, 1761–1767 (2006)

    Article  Google Scholar 

  4. Seraji, H.: Decentralized adaptive control of manipulators: theory, simulation, and experimentation. IEEE Trans. Robot. Autom. 5, 183–200 (1989)

    Article  Google Scholar 

  5. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  6. Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  7. Tong, S., Li, H.-X., Chen, G.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(1), 770–775 (2004)

    Article  Google Scholar 

  8. Tong, S., Liu, C., Li, Y.: Fuzzy adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties. IEEE Trans. Fuzzy Syst. 18(5), 845–861 (2010)

    Article  Google Scholar 

  9. Tong, S., Li, H.-X., Wang, W.: Observer-based adaptive fuzzy control for SISO nonlinear systems. Fuzzy Sets Syst. 148(3), 355–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tong, S., Li, Y., Li, Y., Liu, Y.: Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41(6), 1693–1704 (2011)

    Article  MathSciNet  Google Scholar 

  11. Li, T.-S., Tong, S.-C., Feng, G.: A novel robust adaptive-fuzzy-tracking control for a class of nonlinear multi-input/multi-output systems, fuzzy systems. IEEE Trans. Fuzzy Syst. 18(1), 150–160 (2010)

    Article  Google Scholar 

  12. Lee, H.: Robust adaptive fuzzy control by backstepping for a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 19(2), 265–275 (2011)

    Article  Google Scholar 

  13. Yoo, B.K., Ham, W.C.: Adaptive control of robot manipulator using fuzzy compensator. IEEE Trans. Fuzzy Syst. 8, 186–199 (2000)

    Article  Google Scholar 

  14. Chiou, K.C., Huang, S.J.: An adaptive fuzzy controller for robot manipulators. Mechatronics 15, 151–177 (2005)

    Article  Google Scholar 

  15. Kim, E.: Output feedback tracking control of robot manipulator with model uncertainty via adaptive fuzzy logic. IEEE Trans. Fuzzy Syst. 12, 368–376 (2004)

    Article  Google Scholar 

  16. Hwang, J.P., Kim, E.: Robust tracking control of an electrically driven robot: adaptive fuzzy logic approach. IEEE Trans. Fuzzy Syst. 14, 232–247 (2006)

    Article  MathSciNet  Google Scholar 

  17. Wai, R.J., Chen, P.C.: Intelligent tracking control for robot manipulator including actuator dynamics via TSK-type fuzzy neural network. IEEE Trans. Fuzzy Syst. 12, 552–560 (2004)

    Article  Google Scholar 

  18. Cho, Y.W., Seo, K.S., Lee, H.J.: A direct adaptive fuzzy control of nonlinear systems with application to robot manipulator tracking control. Int. J. Control. Autom. Syst. 5, 630–642 (2007)

    Google Scholar 

  19. Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control. Autom. Syst. 6, 702–712 (2008)

    Google Scholar 

  20. Fateh, M.M.: Robust voltage control of electrical manipulators in task-space. Int. J. Innov. Comput. Inf. Control 6, 2691–2700 (2010)

    Google Scholar 

  21. Fateh, M.M.: Robust fuzzy control of electrical manipulators. J. Intell. Robot. Syst. 60, 415–434 (2010)

    Article  MATH  Google Scholar 

  22. Fateh, M.M.: Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn. 67, 1525–1537 (2012)

    Article  MATH  Google Scholar 

  23. Fateh, M.M.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67(4), 2549–2559 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fateh, M.M., Khorashadizadeh, S.: Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dyn. 69(3), 1465–1477 (2012)

    Article  Google Scholar 

  25. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modelling and Control. Wiley, Hoboken (2006)

    Google Scholar 

  26. Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators. IEEE Press, New York (1996)

    MATH  Google Scholar 

  27. Fateh, M.M.: Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn. 61, 655–666 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fateh, M.M., Khorashadizadeh, S.: Optimal robust voltage control of electrically driven robot manipulators. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0546-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Fateh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fateh, M.M., Fateh, S. Decentralized direct adaptive fuzzy control of robots using voltage control strategy. Nonlinear Dyn 70, 1919–1930 (2012). https://doi.org/10.1007/s11071-012-0583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0583-z

Keywords

Navigation