Skip to main content
Log in

Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Financial systems are known to have irregular and erratic fluctuations due to diverse influences and often result in economic crisis and huge financial losses. Recent models of financial systems show that they behave chaotically and have long range memory dependence. Mitigating these undesirable chaotic natures of financial systems by appropriate control policies is important in order to reduce investment risks and improve economic performance. In this paper, a fractional order fuzzy control policy is employed to suppress the chaotic dynamics of a representative chaotic fractional order financial system. An intelligent Regrouping Particle Swarm Optimization (Reg-PSO) is used to design the numeric weights of the control policy and the methodology is demonstrated by credible simulations. The designed fractional fuzzy control policies are shown to work well with respect to conventional fuzzy control policies in the presence of persistent and anti-persistent noise, which can be due to additional extraneous influences on the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xu, Z., Genccay, R.: Scaling, self-similarity and multifractality in FX markets. Physica A, Stat. Mech. Appl. 323, 578–590 (2003)

    Article  MATH  Google Scholar 

  2. Cont, R.: Long range dependence in financial markets. In: Lutton, E., Vehel, J. (eds.) Fractals in Engineering, pp. 159–180. Springer, Berlin (2005)

    Chapter  Google Scholar 

  3. Zhang, Q., Ma, J.H.: Analysis on Hopf bifurcation and complexity of one kind financial system. Appl. Mech. Mater. 48, 813–816 (2011)

    Article  Google Scholar 

  4. Gao, Q., Ma, J.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58(1), 209–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ma, J., Chen, Y.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II). Appl. Math. Mech. 22(12), 1375–1382 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Puu, T.: Chaos in duopoly pricing. Chaos Solitons Fractals 1(6), 573–581 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guegan, D.: Chaos in economics and finance. Anal. Control Chaotic Syst. 1(1), 1 (2006)

    MathSciNet  Google Scholar 

  8. Chian, A.C.L.: Nonlinear dynamics and chaos in macroeconomics. Int. J. Theor. Appl. Finance 3(3), 601 (2000)

    Article  Google Scholar 

  9. Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. In: Nonlinear Dynamics, pp. 1–12 (2012)

    Google Scholar 

  10. Sewell, M.: Characterization of financial time series. UCL Department of Computer Science, Research Note RN/11/01, pp. 1–35 (2011)

  11. Das, S.: Functional Fractional Calculus. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  12. Sabatier, J., Agrawal, O.P., Machado, J.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Berlin (2007)

    MATH  Google Scholar 

  13. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier, Amsterdam (1974)

    MATH  Google Scholar 

  14. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations (1993)

  15. Vilela Mendes, R.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 55(4), 395–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elliott, R.J., Van Der Hoek, J.: A general fractional white noise theory and applications to finance. Math. Finance 13(2), 301–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, Y., Oksendal, B.: Fractional white noise calculus and applications to finance. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 1–32 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A, Stat. Mech. Appl. 284(1), 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  19. Duarte, F.B., Tenreiro Machado, J., Monteiro Duarte, G.: Dynamics of the Dow Jones and the NASDAQ stock indexes. Nonlinear Dyn. 61(4), 691–705 (2010)

    Article  MATH  Google Scholar 

  20. Tenreiro Machado, J., Duarte, F.B., Monteiro Duarte, G.: Analysis of financial data series using fractional Fourier transform and multidimensional scaling. Nonlinear Dyn. 65(3), 235–245 (2011)

    Article  Google Scholar 

  21. Fanti, L., Manfredi, P.: Chaotic business cycles and fiscal policy: an IS-LM model with distributed tax collection lags. Chaos Solitons Fractals 32(2), 736–744 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helbing, D.: Economic Evolution and Demographic Change (1992)

  23. Wang, Y., Yang, W., Li, K., Hu, F.: Prediction and control of financial crisis based on chaotic system. In: 2010 2nd IEEE International Conference on Information and Financial Engineering (ICIFE), Chongqing, China, 17–19 Sept. 2010, pp. 865–869 (2010). doi:10.1109/ICIFE.2010.5609492

    Chapter  Google Scholar 

  24. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)

    Article  Google Scholar 

  26. Holyst, J.A., Urbanowicz, K.: Chaos control in economical model by time-delayed feedback method. Physica A, Stat. Mech. Appl. 287(3), 587–598 (2000)

    Article  Google Scholar 

  27. Chen, L., Chen, G.: Controlling chaos in an economic model. Physica A, Stat. Mech. Appl. 374(1), 349–358 (2007)

    Article  Google Scholar 

  28. Kopel, M.: Improving the performance of an economic system: controlling chaos. J. Evol. Econ. 7(3), 269–289 (1997)

    Article  MathSciNet  Google Scholar 

  29. Kaas, L.: Stabilizing chaos in a dynamic macroeconomic model. J. Econ. Behav. Organ. 33(3–4), 313–332 (1998)

    Article  Google Scholar 

  30. Du, J., Huang, T., Sheng, Z., Zhang, H.: A new method to control chaos in an economic system. Appl. Math. Comput. 217(6), 2370–2380 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, Z., Huang, X., Shen, H.: Control of an uncertain fractional order economic system via adaptive sliding mode. Neurocomputing 83, 83–88 (2012)

    Article  Google Scholar 

  32. Dadras, S., Momeni, H.R.: Control of a fractional-order economical system via sliding mode. Physica A, Stat. Mech. Appl. 389(12), 2434–2442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, W.C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36(5), 1305–1314 (2008)

    Article  Google Scholar 

  34. Antoniou, A., Vorlow, C.E.: Price clustering and discreteness: is there chaos behind the noise? Physica A, Stat. Mech. Appl. 348, 389–403 (2005)

    Article  Google Scholar 

  35. Machado, J.T., Duarte, G.M., Duarte, F.B.: Identifying economic periods and crisis with the multidimensional scaling. Nonlinear Dyn. 63(4), 611–622 (2011)

    Article  Google Scholar 

  36. Biswas, A., Das, S., Abraham, A., Dasgupta, S.: Design of fractional-order PIλDμ controllers with an improved differential evolution. Eng. Appl. Artif. Intell. 22(2), 343–350 (2009)

    Article  MathSciNet  Google Scholar 

  37. Pan, I., Das, S., Gupta, A.: Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay. ISA Trans. 50(1), 28–36 (2011)

    Article  Google Scholar 

  38. Juang, C.F., Lu, C.M., Lo, C., Wang, C.Y.: Ant colony optimization algorithm for fuzzy controller design and its FPGA implementation. IEEE Trans. Ind. Electron. 55(3), 1453–1462 (2008)

    Article  Google Scholar 

  39. Petrás, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  40. Skovránek, T., Podlubny, I., Petrás, I.: Modeling of the national economies in state-space: a fractional calculus approach. Econ. Model. 29(4), 1322–1327 (2012)

    Article  Google Scholar 

  41. Gan, C.: Noise-induced chaos and basin erosion in softening Duffing oscillator. Chaos Solitons Fractals 25(5), 1069–1081 (2005)

    Article  MATH  Google Scholar 

  42. Salarieh, H., Alasty, A.: Control of stochastic chaos using sliding mode method. J. Comput. Appl. Math. 225(1), 135–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lalley, S.P.: Removing the noise from chaos plus noise. In: Mees, A.I. (ed.) Nonlinear Dynamics and Statistics, Proceedings of the Isaac Newton Institute Workshop. Birkhauser, Boston (2000)

    Google Scholar 

  44. Li, N.Q., Pan, W., Yan, L.S., Luo, B., Xu, M.F., Jiang, N.: Parameter estimation for chaotic systems with and without noise using differential evolution-based method. Chin. Phys. B 20, 060502 (2011)

    Article  Google Scholar 

  45. Willinger, W., Taqqu, M.S., Teverovsky, V.: Stock market prices and long-range dependence. Finance Stoch. 3(1), 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Manolakis, D.G., Ingle, V.K., Kogon, S.M.: Statistical & adaptive signal processing: spectral estimation, signal modeling, adaptive filtering & array processing (2005)

  47. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  MathSciNet  Google Scholar 

  48. Mandelbrot, B.B.: A fast fractional Gaussian noise generator. Water Resour. Res. 7(3), 543–553 (1971)

    Article  Google Scholar 

  49. Koutsoyiannis, D.: The Hurst phenomenon and fractional Gaussian noise made easy. Hydrol. Sci. J. 47(4), 573–595 (2002)

    Article  Google Scholar 

  50. Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.: On the fractional signals and systems. Signal Process. 91(3), 350–371 (2011)

    Article  MATH  Google Scholar 

  51. Das, S., Pan, I., Das, S., Gupta, A.: A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng. Appl. Artif. Intell. 25(2), 430–442 (2012)

    Article  Google Scholar 

  52. Abd-Elouahab, M.S., Hamri, N.-E., Wang, J.: Chaos control of a fractional-order financial system. Hindawi Publ. Corp., Math. Probl. Eng. 2010, 270646 (2010). doi:10.1155/2010/270646

    Google Scholar 

  53. Podlubny, I., Petras, I., Vinagre, B.M., O’leary, P., Dorcák, L.: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1), 281–296 (2002)

    Article  MATH  Google Scholar 

  54. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn. 38(1), 155–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  56. Pan, I., Das, S., Gupta, A.: Handling packet dropouts and random delays for unstable delayed processes in NCS by optimal tuning of PIλDμ controllers with evolutionary algorithms. ISA Trans. 50(4), 557–572 (2011)

    Article  Google Scholar 

  57. Das, S., Pan, I., Das, S., Gupta, A.: Master-slave chaos synchronization via optimal fractional order PIλDμ controller with bacterial foraging algorithm. Nonlinear Dyn. 69(4), 2193–2206 (2012)

    Article  Google Scholar 

  58. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, The University of Western Australia, Perth, Western Australia, Nov./Dec. 1995, vol. 4, pp. 1942–1948 (1995). doi:10.1109/ICNN.1995.488968

    Chapter  Google Scholar 

  59. Evers, G.I., Ben Ghalia, M.: Regrouping particle swarm optimization: a new global optimization algorithm with improved performance consistency across benchmarks. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, San Antonio, Texas, USA, 11–14 Oct. 2009, pp. 3901–3908 (2009). doi:10.1109/ICSMC.2009.5346625

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, I., Korre, A., Das, S. et al. Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dyn 70, 2445–2461 (2012). https://doi.org/10.1007/s11071-012-0632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0632-7

Keywords

Navigation