Skip to main content

Advertisement

Log in

The energy thresholds of nonlinear vibration absorbers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A popular means to mitigate excessive structural vibrations is the attachment of a lightweight spring-mass element, known as a vibration absorber or tuned mass damper. Designing new types of vibration absorbers that outperform the classical linear tuned mass damper is a challenging ongoing research field. This paper focuses on the absorber with a strongly nonlinear spring characteristic. A critical aspect in the design procedure of such nonlinear vibration absorber is the existence of energy thresholds below which no efficient vibration reduction is possible. This paper extends the concept of an energy threshold to a more general parameter threshold representing several threshold values. Two important contributions are obtained. First, one single bifurcation analysis covers every combination of the system parameters. Second, the results are generalized to linear main systems under impulsive load and harmonic load, nonlinear main systems, and general nonlinear spring characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Nonlinear normal modes (NNMs) correspond to periodic solutions of the system and are the nonlinear counterpart of linear vibration modes.

  2. A homoclinic orbit is an orbit that starts and ends at the same fixed point.

References

  1. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001)

    Article  MATH  Google Scholar 

  2. Govaerts, W., Khoshsiar Ghaziani, R., Kuznetsov, Y., Meijer, H.: Matcont: A toolbox for continuation and bifurcation of cycles of maps, Universiteit Gent (Belgium)—Utrecht University (The Netherlands) (2007)

  3. Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.: Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J. Appl. Math. 66, 648–679 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P.N., Bergman, L.A., McFarland, D.M.: Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Physica D 204, 41–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Manevitch, L.I.: Complex representation of dynamics of coupled nonlinear oscillators. In: Mathematical Models of Nonlinear Excitations, Transfer Dynamics and Control in Condensed Systems, pp. 269–300 (1999)

    Chapter  Google Scholar 

  6. Mickens, R.E.: Oscillations in an x 4/3 potential. J. Sound Vib. 246, 275–278 (2001)

    Article  MathSciNet  Google Scholar 

  7. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  8. Nguyen, T.A., Pernot, S.: Design criteriafor optimally tuned nonlinear energy sinks-part1. In: Transient Regime, Nonlinear Dynamics, vol. 69, pp. 1–19 (2012)

    Google Scholar 

  9. Quinn, D.D., Gendelman, O.V., Kerschen, G., Sapsis, T., Bergman, L.A., Vakakis, A.F.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: Part I. J. Sound Vib. 311, 1228–1248 (2008)

    Article  Google Scholar 

  10. Roberson, R.E.: Synthesis of a nonlinear dynamic vibration absorber. J. Franklin Inst. 254, 202–220 (1952)

    Article  MathSciNet  Google Scholar 

  11. Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity). Perseus, Cambridge (1994)

    Google Scholar 

  12. Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural System. Springer, Berlin (2009)

    Google Scholar 

  13. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.-H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I. In: Design Theory and Numerical Results, vol. 66, pp. 763–780 (2012)

    Google Scholar 

  14. Viguié, R., Kerschen, G.: Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology. J. Sound Vib. 326, 780–793 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Loccufier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, F., Loccufier, M. & Aeyels, D. The energy thresholds of nonlinear vibration absorbers. Nonlinear Dyn 74, 755–767 (2013). https://doi.org/10.1007/s11071-013-1003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1003-8

Keywords

Navigation