Skip to main content
Log in

Bifurcation and chaos analysis of multistage planetary gear train

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A nonlinear time-varying dynamic model for a multistage planetary gear train, considering time-varying meshing stiffness, nonlinear error excitation, and piece-wise backlash nonlinearities, is formulated. Varying dynamic motions are obtained by solving the dimensionless equations of motion in general coordinates by using the varying-step Gill numerical integration method. The influences of damping coefficient, excitation frequency, and backlash on bifurcation and chaos properties of the system are analyzed through dynamic bifurcation diagram, time history, phase trajectory, Poincaré map, and power spectrum. It shows that the multi-stage planetary gear train system has various inner nonlinear dynamic behaviors because of the coupling of gear backlash and time-varying meshing stiffness. As the damping coefficient increases, the dynamic behavior of the system transits to an increasingly stable periodic motion, which demonstrates that a higher damping coefficient can suppress a nonperiodic motion and thereby improve its dynamic response. The motion state of the system changes into chaos in different ways of period doubling bifurcation, and Hopf bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

b :

backlash

c :

damping

e :

error of transmission

F :

force

g :

nonlinear displacement function

I :

rotary inertia

K,k :

stiffness

M,m :

mass

N :

number of planet

r :

radius

t :

time

T :

torque

u :

displacement

x :

relative displacement

Z :

number of tooth

α :

pressure angle

θ :

angular displacement

ξ :

damping coefficient

τ :

dimensionless time

φ :

phase angle

Ω,ω :

frequency

b:

base circle

c:

carrier

in:

input

out:

output

p:

planet gear

r:

ring gear

s:

sun gear

(n):

number of stage

T:

matrix transpose

References

  1. Cunliffe, F., Smith, J.D., Welbourn, D.B.: Dynamic tooth loads in epicyclic gears. Trans. Am. Soc. Mech. Eng. 95, 578–584 (1974)

    Google Scholar 

  2. Botman, M.: Epicyclic gear vibrations. J. Eng. Ind. 97, 811–815 (1976)

    Article  Google Scholar 

  3. Antony, G.: Gear vibration—investigation of the dynamic behavior of one stage epicyclic gears. AGMA technical paper 88-FTM-12 (1988)

  4. Kahraman, A.: Free torsional vibration characteristics of compound planetary gear sets. Mech. Mach. Theory 36, 953–971 (2001)

    Article  MATH  Google Scholar 

  5. Blankenship, G.W., Kahraman, A.: Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type nonlinearity. J. Sound Vib. 185, 743–765 (1995)

    Article  MATH  Google Scholar 

  6. Kahraman, A., Blankenship, G.W.: Interactions between commensurate parametric and forcing excitations in a system with clearances. J. Sound Vib. 194, 317–336 (1996)

    Article  Google Scholar 

  7. Al-shyyab, A., Kahraman, A.: Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: sub-harmonic motions. J. Sound Vib. 279, 417–451 (2005)

    Article  Google Scholar 

  8. Al-shyyab, A., Kahraman, A.: A non-linear dynamic model for planetary gear sets. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 221, 567–576 (2007)

    Article  Google Scholar 

  9. Tao, S., Hai Yan, H.: Nonlinear dynamics of a planetary gear system with multiple clearances. Mech. Mach. Theory 38, 1371–1390 (2003)

    Article  MATH  Google Scholar 

  10. Parker, R.G., Vijayakar, S.M., Imajo, T.: Nonlinear dynamic response of a spur gear pair: and experimental comparisons. J. Sound Vib. 237(3), 435–455 (2000)

    Article  Google Scholar 

  11. Vaishya, M., Singh, R.: Sliding friction-induced nonlinearity and parametric effects in gear dynamics. J. Sound Vib. 248(4), 671–694 (2001)

    Article  Google Scholar 

  12. Litak, G., Friswell, M.I.: Vibration in gear systems. Chaos Solitons Fractals 16, 795–800 (2003)

    Article  MATH  Google Scholar 

  13. Litak, G., Friswell, M.I.: Dynamics of a gear system with faults in meshing stiffness. Nonlinear Dyn. 41, 415–421 (2005)

    Article  MATH  Google Scholar 

  14. Chang-Jian, C.W., Chen, C.K.: Chaos and bifurcation of a flexible rub-impact rotor supported by oil film bearings with non-linear suspension. Mech. Mach. Theory 42(3), 312–333 (2007)

    Article  MATH  Google Scholar 

  15. Chang-Jian, C.W., Chen, C.K.: Bifurcation and chaos of a flexible rotor supported by turbulent journal bearings with non-linear suspension. Proc. Inst. Mech. Eng., Proc., Part J, J. Eng. Tribol. 220, 549–561 (2006)

    Article  Google Scholar 

  16. Chang-Jian, C.W., Chen, C.K.: Nonlinear dynamic analysis of a flexible rotor supported by micropolar fluid film journal bearings. Int. J. Eng. Sci. 44, 1050–1070 (2006)

    Article  MATH  Google Scholar 

  17. Chang-Jian, C.W., Chen, C.K.: Bifurcation and chaos analysis of a flexible rotor supported by turbulent long journal bearings. Chaos Solitons Fractals 34(4), 1160–1179 (2007)

    Article  Google Scholar 

  18. Al-shyyab, A., Alwidyan, K.: Non-linear dynamic behaviour of compound planetary gear trains: model formulation and semi-analytical solution. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 223, 199–210 (2009)

    Article  Google Scholar 

  19. Lin, J., Parker, R.G.: Planetary gear parametric instability caused by mesh variation. J. Sound Vib. 249(1), 129–145 (2002)

    Article  Google Scholar 

  20. Parker, R.G.: A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration. J. Sound Vib. 236(4), 561–573 (2000)

    Article  Google Scholar 

  21. Pfeiffer, F., Prestl, W.: Decoupling measures for rattling noise in gearboxes. In: Proc. Inst. Mech. Eng., First International Conference on Gearbox Noise and Vibration, Cambridge, Great Britain (1990)

    Google Scholar 

  22. Pfeiffer, F., Kunert, A.: Rattling models from deterministic to stochastic processes. Nonlinear Dyn. 1(1), 63–74 (1990)

    Article  Google Scholar 

  23. Kantz, H., Schreiber, T.: Non-Linear Time Series Analysis. Cambridge University Press, Cambridge (1997)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51105280) and the Fundamental Research Funds for the Central Universities of China (No. 2012208020206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Wu, Q. & Zhang, Z. Bifurcation and chaos analysis of multistage planetary gear train. Nonlinear Dyn 75, 217–233 (2014). https://doi.org/10.1007/s11071-013-1060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1060-z

Keywords

Navigation