Skip to main content
Log in

Realizing logic gates with time-delayed synthetic genetic networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We demonstrate the realization of fundamental logic operations, as well as a memory element, with engineered delayed synthetic gene networks. Further, we investigate the effect of time delay in different kinds of processes, on the operational range of this biological logic gate. We show that this delay can either enhance or diminish logic behavior, depending on its functional form. Lastly, we show that the desired response to inputs can be induced, even in the absence of noise, by time delay alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)

    Article  Google Scholar 

  2. Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993)

    Article  Google Scholar 

  3. Murali, K., Sinha, S., Ditto, W.L., Bulsara, A.R.: Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor. Phys. Rev. Lett. 102, 104101 (2009)

    Article  Google Scholar 

  4. Sinha, S., Cruz, J.M., Buhse, T., Parmananda, P.: Europhys. Lett. 86, 60003 (2009)

    Article  Google Scholar 

  5. Guerra, D.N., Bulsara, A.R., Ditto, W.L., Sinha, S., Murali, K., Mohanty, P.: Noise-assisted reprogrammable nanomechanical logic gate. Nano Lett. 10, 1168–1171 (2010)

    Article  Google Scholar 

  6. Singh, K.P., Sinha, S.: Enhancement of logical responses by noise in a bistable optical system. Phys. Rev. E 83, 046219 (2011)

    Article  Google Scholar 

  7. Wang, C., Yi, M., Yang, K.: Time-delay accelerated transition of gene switch and enhanced stochastic resonance in bistable gene regulatory model. In: IEEE International Conference on Systems Biology (ISB), Zhuhai, China, September 24, p. 101 (2011)

    Google Scholar 

  8. Craig, E.M., Long, B.R., Parrondo, J.M.R., Linke, H.: Effect of time delay on feedback control of a flashing ratchet. Europhys. Lett. 81, 10002 (2008)

    Article  Google Scholar 

  9. Nie, L.R., Mei, D.C.: Noise and time delay: suppressed population explosion of the mutualism system. Europhys. Lett. 79, 20005 (2007)

    Article  MathSciNet  Google Scholar 

  10. Nie, L.R., Mei, D.C.: Effects of time delay on symmetric two species competition subject to noise. Phys. Rev. E 77, 031107 (2008)

    Article  Google Scholar 

  11. Zhang, D., Song, H., Yu, L., Wang, Q.G., Ong, C.: Set-values filtering for discrete time-delay genetic regulatory networks with time-varying parameters. Nonlinear Dyn. 69, 693 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hasty, J., Isaacs, F., Dolnik, M., McMillen, D., Collins, J.J.: Designer gene network: towards fundamental cellular control. Chaos 11, 207–220 (2001)

    Article  MATH  Google Scholar 

  13. Gardner, T.S., Cantor, C.R., Collins, J.C.: Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)

    Article  Google Scholar 

  14. Ando, H., Sinha, S., Storni, R., Aihara, K.: Synthetic gene networks as potential flexible parallel logic gate. Europhys. Lett. 81, 50001 (2011)

    Article  Google Scholar 

  15. Dari, A., Kia, B., Bulsara, A.R., Ditto, W.: Creating morphable logic gates using logical stochastic resonance in an engineered gene network. Europhys. Lett. 93, 18001 (2011)

    Article  Google Scholar 

  16. Sharma, P.R., Somani, P., Shrimali, M.D.: Bio-inspired computation using synthetic genetic network. Phys. Lett. A 377, 367–369 (2013)

    Article  Google Scholar 

  17. Hellen, E.H., Dana, S.K., Kurths, J., Kehler, E., Sinha, S.: Noise-aided logic in an electronic analog of synthetic genetic networks. PLos ONE 8, e76032 (2013). doi:10.1371/journal.pone.0076032

  18. Hasty, J., Pradines, J., Dolnik, M., Collins, J.J.: Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. USA 97, 2075–2080 (2000)

    Article  Google Scholar 

  19. Frank, D.: Delay Fokker–Plank equation, perturbation theory, and data analysis for nonlinear stochastic systems with time delay. Phys. Rev. E 71, 031106 (2005)

    Article  Google Scholar 

  20. Kohar, V., Sinha, S.: Noise-assisted morphing of memory and logic function. Phys. Lett. A 376, 957–962 (2012)

    Article  MATH  Google Scholar 

  21. Gupta, A., Sohane, A., Kohar, V., Murali, K., Sinha, S.: Noise-free logical stochastic resonance. Phys. Rev. E 84, 055201(R) (2011)

    Article  Google Scholar 

  22. Benenson, Y.: Science 340, 554 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

AS acknowledges support by the Aihara Project, the FIRST program from JSPS, initiated by CSTP. V.K. acknowledges research fellowship from CSIR, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Dev Shrimali.

Appendix

Appendix

Time delay in the degradation process is given by the following equation:

$$\begin{aligned} \frac{dx(t)}{dt} =& \frac{m(1+x^2+\alpha\sigma_1 x^4)}{1+x^2+\sigma_1 x^4+\sigma_1\sigma_2 x^6} \\ &{} - \gamma x(t-\tau) + D\eta(t). \end{aligned}$$
(6)

The presence of small delay changes the position and depth of the wells in the bistable potential.

The dynamics in Eq. (6) is a non-Markovian process. Using the probability density approach, the non-Markovian process can be reduced to a Markovian process, and the approximate time-delay Fokker–Plank equation is

$$ \frac{\partial P(x,t)}{dt} = -\frac{\partial[h_{\mathrm{eff}}P(x,t)]}{\partial x}+D\frac{\partial^2P(x,t)}{\partial^2x}. $$
(7)

Here the conditional average h eff is

$$ h_{\mathrm{eff}} =\int_{-\infty}^{\infty} h(x,x_\tau)P(x_\tau, t-\tau| x,t) $$
(8)

where

$$\begin{aligned} &{x_\tau= x(t-\tau),}\\ &{h(x,x_\tau) = \frac{m(1+x^2+\alpha\sigma_1 x^4)}{1+x^2+\sigma_1 x^4+\sigma_1\sigma_2 x^6} - \gamma x_\tau,}\\ &{h(x) = \frac{m(1+x^2+\alpha\sigma_1 x^4)}{1+x^2+\sigma_1 x^4+\sigma_1\sigma_2 x^6} - \gamma x.} \end{aligned}$$

P(x τ ,tτ|x,t) is the zeroth order approximate Markovian transition probability density

$$\begin{aligned} &{P(x_\tau, t-\tau| x,t) = \frac{1}{\sqrt{4\pi D\tau}} }\\ &{\quad \times\exp \biggl(- \frac{(x_\tau-x-h(x)\tau)^2}{4D\tau} \biggr). } \end{aligned}$$
(9)

Substituting Eq. (9) into Eq. (8), we obtain

$$\begin{aligned} h_{\mathrm{eff}} =& (1-\gamma\tau)\frac{m(1+x^2+\alpha\sigma_1 x^4)}{1+x^2+\sigma_1 x^4+\sigma_1\sigma_2 x^6} \\ &{} - (1-\gamma\tau)\gamma x_\tau. \end{aligned}$$
(10)

So, the effective Langevin equation for Eq. (7) becomes

$$\begin{aligned} \frac{dx(t)}{dt} =& (1-\gamma\tau)\frac{m(1+x^2+\alpha\sigma_1 x^4)}{1+x^2+\sigma_1 x^4+\sigma_1\sigma_2 x^6} \end{aligned}$$
(11)
$$\begin{aligned} &{}- (1-\gamma\tau)\gamma x_\tau+ D\eta(t). \end{aligned}$$
(12)

The effective time-delay potential function of Eq. (6) is

$$\begin{aligned} U_{\mathrm{eff}} =& -(1-\gamma\tau)\int\frac{m(1+x^2+\alpha\sigma_1 x^4)}{1+x^2+\sigma_1 x^4+\sigma_1\sigma_2 x^6}\,dx \end{aligned}$$
(13)
$$\begin{aligned} &{}+ (1-\gamma\tau)\int\gamma x\,dx. \end{aligned}$$
(14)

The effect of time delay on the effective potential given by Eq. (14) is shown in Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Kohar, V., Shrimali, M.D. et al. Realizing logic gates with time-delayed synthetic genetic networks. Nonlinear Dyn 76, 431–439 (2014). https://doi.org/10.1007/s11071-013-1136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1136-9

Keywords

Navigation