Skip to main content
Log in

Invariant analysis and exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation by Lie group analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the time fractional Sharma–Tasso–Olver (FSTO) equation, Lie point symmetries of the FSTO equation with the Riemann–Liouville derivatives are considered. By using the Lie group analysis method, the invariance properties of the FSTO equation are investigated. In the sense of point symmetry, the vector fields of the FSTO equation are presented. And then, the symmetry reductions are provided. By making use of the obtained Lie point symmetries, it is shown that this equation can transform into a nonlinear ordinary differential equation of fractional order with the new independent variable ξ=xt α/3. The derivative is an Erdélyi–Kober derivative depending on a parameter α. At last, by means of the sub-equation method, some exact and explicit solutions to the FSTO equation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olver, P.J.: Application of Lie Group to Differential Equation. Springer, New York (1986)

    Book  Google Scholar 

  2. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  3. Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. VI 3, 328–368 (1881)

    Google Scholar 

  4. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  5. Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations vols. 1–3. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  6. Liu, H.Z., Li, J.B., Liu, L.: Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations. Nonlinear Dyn. 59, 497–502 (2010)

    Article  MATH  Google Scholar 

  7. Krishnan, E.V., Kumar, S., Biswas, A.: Solitons and other nonlinear waves of the Bossiness equation. Nonlinear Dyn. 70, 1213–1221 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gupta, R.K., Bansal, A.: Similarity reductions and exact solutions of generalized Bretherton equation with time-dependent coefficients. Nonlinear Dyn. 71, 1–12 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Craddock, M., Lennox, K.: Lie symmetry methods for multi-dimensional parabolic PDEs and diffusions. J. Differ. Equ. 252, 56–90 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kumar, S., Singh, K., Gupta, R.K.: Painlevé analysis, Lie symmetries and exact solutions for (2+1)-dimensional variable coefficients Broer–Kaup equations. Commun. Nonlinear Sci. Numer. Simul. 17, 1529–1541 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Vaneeva, O.: Lie symmetries and exact solutions of variable coefficient mKdV equations: an equivalence based approach. Commun. Nonlinear Sci. Numer. Simul. 17, 611–618 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Naz, R., Khan, M.D., Naeem, I.: Conservation laws and exact solutions of a class of non-linear regularized long wave equations via double reduction theory and Lie symmetries. Commun. Nonlinear Sci. Numer. Simul. 18, 826–834 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Listopadovaa, V., Magdab, O., Pobyzhc, V.: How to find solutions, Lie symmetries, and conservation laws of forced Korteweg—de Vries equations in optimal way. Nonlinear Anal., Real World Appl. 14, 202–205 (2013)

    Article  MathSciNet  Google Scholar 

  14. Johnpillaia, A.G., Karab, A.H., Biswas, A.: Symmetry reduction, exact group-invariant solutions and conservation laws of the Benjamin–Bona–Mahoney equation. Appl. Math. Lett. 26, 376–381 (2013)

    Article  MathSciNet  Google Scholar 

  15. Jefferson, G.F.: On the second-order approximate symmetry classification and optimal systems of subalgebras for a forced Korteweg—de Vries equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2340–2358 (2013)

    Article  MathSciNet  Google Scholar 

  16. Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2321–2326 (2013)

    Article  MathSciNet  Google Scholar 

  17. Liu, H.Z.: Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. Stud. Appl. Math. (2013). doi:10.1111/sapm.12011

    Google Scholar 

  18. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Yu.: Continuous transformation groups of fractional differential equations. Vestnik, USATU 9, 125–135 (2007) (in Russian)

    Google Scholar 

  19. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Yu.: Symmetry properties of fractional diffusion equations. Phys. Scr. T 136, 014016 (2009)

    Article  Google Scholar 

  20. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227, 81–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Djordjevic, V.D., Atanackovic, T.M.: Similarity solutions to nonlinear heat conduction and Burgers/Korteweg—de Vries fractional equations. J. Comput. Appl. Math. 212, 701–714 (2008)

    Article  MathSciNet  Google Scholar 

  22. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations. J. Math. Anal. Appl. 393, 341–347 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jafari, H., Daftardar-Gejji, V.: Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput. 180, 488–497 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Daftardar-Gejji, V., Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 189, 541–548 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. El-Sayed, A.M.A., Gaber, M.: The Adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys. Lett. A 359, 175–182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Chen, Y., An, H.L.: Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives. Appl. Math. Comput. 200, 87–95 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Odibat, Z., Momani, S.: A generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21, 194–199 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, X., Chen, W.: Analytical study on the fractional anomalous diffusion in a half-plane. J. Phys. A, Math. Theor. 43(49), 11 (2010)

    Google Scholar 

  29. He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. J. Non-Linear Mech. 35, 37–43 (2000)

    Article  MATH  Google Scholar 

  30. Wu, G., Lee, E.W.M.: Fractional variational iteration method and its application. Phys. Lett. A 374, 2506–2509 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhang, S., Zhang, H.Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069–1073 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Guo, S., Mei, L.Q., Li, Y., Sun, Y.F.: The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 376, 407–411 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lu, B.: Bäklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376, 2045–2048 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684–693 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Song, L.N., Wang, Q., Zhang, H.Q.: Rational approximation solution of the fractional Sharma–Tasso–Olver equation. J. Comput. Appl. Math. 224, 210–218 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Jumarie, G.: Cauchy’s integral formula via the modified Riemann–Liouville derivative for analytic functions of fractional order. Appl. Math. Lett. 23, 1444–1450 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  40. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  41. Kiryakova, V.: Generalised Fractional Calculus and Applications. Pitman Res. Notes in Math., vol. 301 (1994)

    Google Scholar 

  42. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  43. Wang, G., Xu, T.: Symmetry properties and explicit solutions of the nonlinear time fractional KdV equation. Bound. Value Probl. 2013, 232 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The project is supported by the National Natural Science Foundation of China (NNSFC) (Grant No. 11171022). The authors express their sincere thanks to the referees for their careful review this manuscript and their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, GW., Xu, TZ. Invariant analysis and exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation by Lie group analysis. Nonlinear Dyn 76, 571–580 (2014). https://doi.org/10.1007/s11071-013-1150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1150-y

Keywords

Navigation