Skip to main content
Log in

Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of a two-dimensional discrete Hindmarsh–Rose model is discussed. It is shown that the system undergoes flip bifurcation, Neimark–Sacker bifurcation, and 1:1 resonance by using a center manifold theorem and bifurcation theory. Furthermore, we present the numerical simulations not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, including orbits of period 3, 6, 15, cascades of period-doubling bifurcation in orbits of period 2, 4, 8, 16, quasiperiodic orbits, and chaotic sets. These results obtained in this paper show far richer dynamics of the discrete Hindmarsh–Rose model compared with the corresponding continuous model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos—An Introduction to Dynamical Systems. Springer, New York (1996)

    MATH  Google Scholar 

  2. Broer, H.W., Roussarie, R., Simó, C.: Invariant circles in the Bogdanov–Takens bifurcation for diffeomorphisms. Ergod. Theory Dyn. Syst. 16, 1147–1172 (1996)

    Article  MATH  Google Scholar 

  3. Carr, J.: Application of Center Manifold Theory. Springer, New York (1981)

    Book  Google Scholar 

  4. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  5. FitzHugh, R.: Impulses and physiological state in theoretical models of nerve membrane. Biophys. J. 1, 445–467 (1961)

    Article  Google Scholar 

  6. González-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurc. Chaos 17, 3071–3083 (2007)

    Article  MATH  Google Scholar 

  7. Guckenheimer, J.: Multiple bifurcation problems of codimension two. SIAM J. Math. Anal. 15, 1–49 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  9. He, Z.M., Lai, X.: Bifurcations and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal., Real World Appl. 12, 403–417 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Article  Google Scholar 

  11. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221, 87–102 (1984)

    Article  Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: A quantitive description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  13. Huang, J.C.: Bifurcations and chaos in a discrete predator-prey system with Holling type-IV functional response. Acta Math. Appl. Sin. 20(1), 157–176 (2005)

    Article  Google Scholar 

  14. Innocentia, G., Morelli, A., Genesio, R., Torcini, A.: Dynamical phases of the Hindmarsh–Rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos 17, 043128 (2007)

    Article  MathSciNet  Google Scholar 

  15. Jing, Z.J.: Local and global bifurcations and applications in a predator-prey system with several parameters. Syst. Sci. Math. Sci. 2, 337–352 (1989)

    MATH  Google Scholar 

  16. Jing, Z.J., Chang, Y., Guo, B.L.: Bifurcation and chaos in discrete FitzHugh–Nagumo system. Chaos Solitons Fractals 21, 701–720 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  18. Li, Y.L., Xiao, D.M.: Bifurcations of a predator-prey system of Holling and Leslie types. Chaos Solitons Fractals 34, 606–620 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, X.L., Liu, S.Q.: Codimension-two bifurcations analysis in two-dimensional Hindmarsh–Rose model. Nonlinear Dyn. 67, 847–857 (2012)

    Article  MATH  Google Scholar 

  20. Liu, X.L., Xiao, D.: Complex dynamic behaviors of a discrete-time predator-prey system. Chaos Solitons Fractals 32, 80–94 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peng, M.S.: Multiple bifurcations and periodic “bubbling” in a delay population model. Chaos Solitons Fractals 25, 1123–1130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  23. Polyanin, A.D., Chernoutsan, A.I.: A Concise Handbook of Mathematics, Physics, and Engineering Science. CRC Press, New York (2011)

    Google Scholar 

  24. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos, 2nd edn. CRC Press, Boca Raton, London, New York (1999)

    MATH  Google Scholar 

  25. Ruan, S., Xiao, D.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Storace, M., Linaro, D., Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18, 033128 (2008)

    Article  MathSciNet  Google Scholar 

  27. Svetoslav, N.: An alternative bifurcation analysis of the Rose–Hindmarsh model. Chaos Solitons Fractals 23, 1643–1649 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tsuji, S., Ueta, T., Kawakami, H., Fujii, H., Aihara, K.: Bifurcations in two-dimensional Hindmarsh–Rose type model. Int. J. Bifurc. Chaos 17, 985–998 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vandermeer, J.: Period ‘bubbling’ in simple ecological models: pattern and chaos formation in a quartic model. Ecol. Model. 95, 311–317 (1997)

    Article  Google Scholar 

  30. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  31. Wu, X.Y., Chen, B.S.: Bifurcations and stability of a discrete singular bioeconomic system. Nonlinear Dyn. 73, 1813–1828 (2013)

    Article  MATH  Google Scholar 

  32. Yagasaki, K.: Codimension-two bifurcations in a pendulum with feedback control. Int. J. Non-Linear Mech. 34, 983–1002 (1999)

    Article  MathSciNet  Google Scholar 

  33. Yagasaki, K.: Melnikov’s method and codimension-two bifurcations in forced oscillations. J. Differ. Equ. 18, 24–51 (2002)

    MathSciNet  Google Scholar 

  34. Yi, N., Zhang, Q., Liu, P., Lin, Y.: Codimension-two bifurcations analysis and tracking control on a discrete epidemic model. J. Syst. Sci. Complex. 24, 1033–1056 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her careful reading and valuable suggestions, which lead to improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin He.

Appendix

Appendix

In this section, we provide the proof of Theorem 3.4 and the expressions of bifurcation curves near the 1:1 resonance point.

Proof of Theorem 3.4

By Proposition 3.1 in [33] and corresponding results in [2, 17], we only need to check the nondegeneracy conditions

$$q_{20}(0) \neq0, \qquad p_{20}(0) + q_{11}(0)- q_{20}(0)\neq0, $$

and the transversality condition

$$\mathop{\mathrm{det}} D_{\mu}\rho(0)\neq0. $$

It is easy to see that the above conditions hold if b>2d and δδ 3.

Furthermore, the invariant circle created at the Neimark–Sacker bifurcation is stable (resp. unstable) if

$$q_{20}(0) \bigl(p_{20}(0) + q_{11}(0)- q_{20}(0) \bigr) < 0\quad (\mbox{resp}. > 0). $$

It is easy to calculate that the invariant circle is stable (resp., unstable) when \(\delta>(\mbox{resp}.<)\frac{2d-b}{d-b}\).

Next, we give the lower order terms of μ to express the bifurcation curves near 1:1 resonance point by Maple.

(i) The fold bifurcation curve can be expressed as

$$\begin{aligned} & {F_{10}\mu_{1}+F_{01}\mu_{2}+ \frac{1}{2}F_{20}\mu_{1}^{2}+F_{11} \mu_{1}\mu_{2}+\frac{1}{2}F_{02} \mu_{2}^{2} }\\ & {\quad {}=O \bigl(\bigl(|\mu_{1}|+| \mu_{2}|\bigr)^{3} \bigr), } \end{aligned}$$

where

$$\begin{aligned} & {F_{10}=\displaystyle{\frac{2 ( 2 d-b-\delta d+\delta b ) ^{4}}{ ( b-d ) ^{3}{d}^{3}}}, }\\ & {F_{01}=\displaystyle{\frac{ 16 ( 2 d-b-\delta d+\delta b ) ^{4}}{ (b-d ) ^{3}}}, } \end{aligned}$$
$$\begin{aligned} F_{20} =& \frac{ ( 2 d-b-\delta d+\delta b ) ^{ 2}}{72 (b-d ) ^{4}{d}^{6}} \bigl( 972 d{\delta}^{4}{b}^{3}+1632 {\delta}^{4}{d}^{3}b-1870 { \delta}^{4}{d}^{2}{b}^{2}-6 {b}^{3}d{\delta}^{3}-840 {b}^{3}d{\delta }^{2} \\ &{}-986 {\delta}^{5}{d}^{3}b+1278 {\delta}^{5}{d}^{2}{b}^{2}-2808 {d}^{3}\delta b+432 {d}^{2}\delta {b}^{2}-3084 {d}^{3}{\delta}^{2}b+2640 {d}^{2}{\delta}^{2}{b}^{2} \\ &{}+1320 {d}^{3}{\delta}^{3}b-948 { d}^{2}{ \delta}^{3}{b}^{2}+432 {b}^{3}d\delta+3888 {d}^{3}b+1728 {d} ^{4}\delta+1296 {d}^{4}{ \delta}^{2}-492 {d}^{4}{\delta}^{3} \\ & {}-1296 {b }^{2}{d}^{2}-532 {\delta}^{4}{d}^{4}-30 {b}^{4}{\delta}^{2}+126 {b} ^{4}{ \delta}^{3}-202 {\delta}^{4}{b}^{4}+280 { \delta}^{5}{d}^{4}+146 {\delta}^{5}{b}^{4}-40 {\delta}^{6}{d}^{4} \\ &{}-40 {\delta}^{6}{b}^{4}+ 2592 {d}^{5} \delta-4752 {d}^{5}{\delta}^{2}+1728 {d}^{5}{ \delta}^{3 }+912 {\delta}^{4}{d}^{5}-36 {b}^{5}{\delta}^{3}+120 {\delta}^{4}{b }^{5}-424 {\delta}^{5}{d}^{5} \\ &{}-145 {\delta}^{5}{b}^{5}-48 {\delta}^{ 6}{d}^{5}+75 {\delta}^{6}{b}^{5}+18 {\delta}^{7}{d}^{5}-15 {\delta} ^{7}{b}^{5}-{\delta}^{8}{d}^{5}+{ \delta}^{8}{b}^{5}-3240 {d}^{4}-718 d{ \delta}^{5}{b}^{3} \\ &{}+160 {\delta}^{6}{d}^{3}b-240 {\delta}^{6}{d}^ {2}{b}^{2}+160 d{\delta}^{6}{b}^{3}-6480 {d}^{4}\delta b+5184 {d}^ {3}\delta {b}^{2}-1296 {d}^{2}\delta {b}^{3} \\ &{}+11664 {d}^{4}{\delta} ^{2}b -8640 {d}^{3}{ \delta}^{2}{b}^{2}+1296 {d}^{2}{ \delta}^{2}{b}^{3 }-3168 {d}^{4}{ \delta}^{3}b+2556 {d}^{2}{\delta}^{3}{b}^{3}+432 {b} ^{4}d{\delta}^{2} \\ &{}-1080 {b}^{4}d{\delta}^{3}-3696 {\delta}^{4}{d}^{4}b+5556 {\delta }^{4}{d}^{3}{b}^{2} -3552 { \delta}^{4}{d}^{2}{b}^{3}+ 660 d{ \delta}^{4}{b}^{4}+1448 {\delta}^{5}{d}^{4}b \\ &{}-1654 {\delta}^{5 }{d}^{3}{b}^{2}+515 { \delta}^{5}{d}^{2}{b}^{3}+260 d{ \delta}^{5}{b}^ {4} +264 {\delta}^{6}{d}^{4}b-579 {\delta}^{6}{d}^{3}{b}^{2}+633 { \delta}^{6}{b}^{3}{d}^{2}-345 { \delta}^{6}{b}^{4}d \\ &{}-87 {\delta}^{7}{d }^{4}b+168 {\delta}^{7}{d}^{3}{b}^{2}-162 {\delta }^{7}{b}^{3}{d}^{2}+78 { \delta}^{7}{b}^{4}d+5 {\delta }^{8}{d}^{4}b-10 {\delta}^{8}{d}^ {3}{b}^{2}+10 { \delta}^{8}{b}^{3}{d}^{2}-5 {\delta}^{8}{b}^{4}d \bigr), \\ F_{11} =& {\frac{\delta ( 2 d-b-\delta d+\delta b ) ^{3}}{ 18 (b-d ) ^{4}{d}^{3}}} \bigl( -216 {d}^{3}-30 d{ \delta }^{4}{b}^{3}+12 {\delta}^{4}{d}^{3} b+13 {\delta}^{4}{d}^{2}{b}^{2}-36 {b}^{3}d{\delta}^{3}+36 {b}^{3}d { \delta}^{2} \\ &{}+38 {\delta}^{5}{d}^{3}b-54 {\delta}^{5}{d}^{2}{b}^{2}- 156 {d}^{2}\delta b-396 {d}^{2}{\delta}^{2}b+488 {d}^{2}{\delta}^{ 3}b+12 {b}^{2}d\delta+270 {b}^{2}d{\delta}^{2}-394 {b}^{2}d{\delta} ^{3} \\ &{}-120 {\delta}^{4}{d}^{2}b+120 d{\delta}^{4}{b}^{2}+180 {d}^{3}{ \delta}^{2}b-144 {d}^{2}{ \delta}^{2}{b}^{2}-216 {d}^{3}{ \delta}^{3}b +174 {d}^{2}{\delta}^{3}{b}^{2}+114 {d}^{3}\delta \\ &{}+198 {d}^{3}{ \delta}^{2}-194 {d}^{3}{ \delta}^{3}+108 b{d}^{2}+40 {\delta}^{4}{d} ^{3}+12 {b}^{3}\delta-72 {b}^{3}{ \delta}^{2}+100 {b}^{3}{\delta}^{3 }-40 { \delta}^{4}{b}^{3} \\ &{}-72 {d}^{4}{\delta}^{2}+84 {d}^{4}{ \delta}^ {3}-8 {\delta}^{4}{d}^{4}-6 {b}^{4}{\delta}^{3}+13 {\delta}^{4}{b}^ {4}-10 {\delta}^{5}{d}^{4}-8 {\delta}^{5}{b}^{4}+{ \delta}^{6}{d}^{4} +{\delta}^{6}{b}^{4}+34 d{\delta}^{5}{b}^{3} \\ &{}-4 {\delta}^{6}{d}^{3}b+ 6 {\delta}^{6}{d}^{2}{b}^{2}-4 d{\delta}^{6}{b}^{3} \bigr), \\ F_{02} =&{ \frac{8{\delta}^{2} ( 2 d-b-\delta d+\delta b ) ^{4}}{9(b-d) ^{4}}} \bigl( -72 {d}^{2}-162 d\delta b+80 d{ \delta}^{2}b+ 108 \delta {d}^{2}-40 {\delta}^{2}{d}^{2}+72 bd+54 \delta {b}^{2 } \\ &{}-40 {\delta}^{2}{b}^{2}-18 {b}^{2}+2 { \delta}^{3}{d}^{3}-5 { \delta}^{3}b{d}^{2}-{ \delta}^{3}{b}^{3}-{\delta}^{4}{d}^{3}+{ \delta}^{ 4}{b}^{3}+4 {\delta}^{3}d{b}^{2}+3 {\delta}^{4}{d}^{2}b-3 {\delta}^ {4}{b}^{2}d \bigr). \end{aligned}$$

 (ii) The Neimark–Sacker bifurcation curve can be expressed as

$$H_{10}\mu_{1}+H_{01}\mu_{2}+ \frac{1}{2}H_{20}\mu_{1}^{2}+H_{11 } \mu_{1}\mu_{2}+\frac{1}{2}H_{02} \mu_{2}^{2}=O \bigl(\bigl(|\mu_{1}|+| \mu_{2}|\bigr)^{3} \bigr) $$

and

$$\mathit{HF}_{10}\mu_{1}+\mathit{HF}_{01}\mu_{2}+O \bigl(\bigl(|\mu_{1}|+|\mu_{2}|\bigr)^{2} \bigr)<0, $$

where

$$\begin{aligned} H_{10} =&\displaystyle{\frac{2 ( 2 d-b-\delta d+\delta b ) ^{4}}{ (b-d ) ^{3}{d}^{3}}}, \\ H_{01} =&\displaystyle{\frac{16 ( 2 d-b-\delta d+\delta b ) ^{4}}{ (b - d ) ^{3}}}, \\ H_{20} =&{\frac{ ( 2 d-b-\delta d+\delta b ) ^{ 3}}{72 (b -d ) ^{3}{d}^{6}}} \bigl( 1296 {d}^{2}-432 d \delta b+588 d{\delta}^{2}b-108 { \delta}^{3}db-648 \delta {d}^{2}-612 {\delta}^{2}{d}^{2} \\ &{}+12 { \delta}^{2}{b}^{2}+132 {\delta}^{3}{d}^{2}-30 {\delta}^{3}{b}^{2}+ 1296 {d}^{2}\delta b-1296 {d}^{2}{\delta}^{2}b-792 {d}^{2}{\delta} ^{3}b-432 {b}^{2}d{\delta}^{2} \\ &{}+756 {b}^{2}d{\delta}^{3}+768 {\delta }^{4}{d}^{2}b-228 d{\delta}^{4}{b}^{2}+92 {\delta}^{5}{d}^{2}b-137 d{\delta}^{5}{b}^{2}-1296 {d}^{3}\delta+1728 {d}^{3}{\delta}^{2} \\ &{}-456 {\delta}^{4}{d}^{3}+36 {b}^{3}{ \delta}^{3}-84 {\delta}^{4}{b}^{3}- 16 { \delta}^{5}{d}^{3}+61 {\delta}^{5}{b}^{3}+40 {\delta}^{4}{d}^{2 }+26 {\delta}^{4}{b}^{2}+16 {\delta}^{6}{d}^{3} \\ &{}-14 {\delta}^{6}{b}^ {3}-8 {\delta}^{5}{d}^{2}-8 {\delta}^{5}{b}^{2}-{\delta}^{7}{d}^{3}+ {\delta}^{7}{b}^{3}-66 {\delta}^{4}db-46 { \delta}^{6}{d}^{2}b+44 { \delta}^{6}{b}^{2}d \\ &{}+16 {\delta}^{5}db-3 {\delta}^{7}d{b}^{2}+3 { \delta}^{7}{d}^{2}b \bigr) , \\ H_{11} =&{ \frac{{\delta}^{2} ( 2 d-b-\delta d+\delta b ) ^ {3}}{18 (b -d ) ^{3}{d}^{3}}} \bigl( -114 {d}^{2}-66 d\delta b-54 d{ \delta}^{2}b+16 {\delta }^{3}db+66 \delta {d}^{2}+34 {\delta}^{2}{d}^{2} \\ &{}+114 bd-6 \delta {b}^{2}+20 {\delta}^{2}{b}^{2}-8 {\delta}^{3}{d}^{2}-8 {\delta}^{ 3}{b}^{2}-6 {b}^{2}-108 {d}^{2}\delta b+132 {d}^{2}{ \delta}^{2}b-4 {d}^{2}{\delta}^{3}b \\ &{}+36 {b}^{2}d\delta-42 {b}^{2}d{\delta}^{2}-17 {b}^{2}d{\delta}^{3}-28 {\delta}^{4}{d}^{2}b+26 d{\delta}^{4}{b}^{ 2}+3 {\delta}^{5}{d}^{2}b-3 d{\delta}^{5}{b}^{2}+72 {d}^{3}\delta \\ &{}-84 {d}^{3}{\delta}^{2}+8 {d}^{3}{ \delta}^{3}+10 {\delta}^{4}{d}^{3} -6 {b}^{3}{\delta}^{2}+13 {b}^{3}{ \delta}^{3}-8 {\delta}^{4}{b}^{3} -{ \delta}^{5}{d}^{3}+{\delta}^{5}{b}^{3} \bigr), \\ H_{02} =&\frac{8{\delta}^{3} ( 2 d-b-\delta d+\delta b ) ^{4}}{ 9 (b -d )^{3}} \bigl( -12 d+6 b+8 \delta d-8 \delta b-2 {\delta} ^{2}{d}^{2}+3 d{\delta}^{2}b \\ &{}-{\delta}^{2}{b}^{2}+{\delta}^{3}{d}^{2}- 2 {\delta}^{3}db+{\delta}^{3}{b}^{2} \bigr), \\ \mathit{HF}_{10} =&-{\frac{ ( 2 d-b-\delta d+\delta b )}{ 6 (b-d ) ^{2}{d}^{3}}} \bigl( 18 { d}^{2}-12 d \delta b-14 {\delta}^{2}{d}^{2}+21 d{\delta}^{2}b+3 \delta {b}^{2}-7 {\delta}^{2}{b}^{2} \\ &{}+4 {\delta}^{3}{d}^{2}-8 { \delta}^{3}db+4 { \delta}^{3}{b}^{2}+12 \delta {d}^{2} \bigr), \\ \mathit{HF}_{01} =&-{\frac{4\delta ( 2 d-b-\delta d+\delta b ) ^{2} ( 6 d-3 b-4 \delta d+4 \delta b ) }{3(b-d) ^{2}}}. \end{aligned}$$

 (iii) The homoclinic bifurcation curve can be expressed as

$$\mathit{Hom}_{10}\mu_{1}+\mathit{Hom}_{01}\mu_{2}+ \frac{1}{2}\mathit{Hom}_{20 }\mu_{1}^{2}+\mathit{Hom}_{11} \mu_{1}\mu_{2}+\frac{1}{2}\mathit{Hom}_{ 02} \mu_{2}^{2}=O \bigl(\bigl(|\mu_{1}|+| \mu_{2}|\bigr)^{3} \bigr) $$

and

$$\mathit{HF}_{10}\mu_{1}+\mathit{HF}_{01}\mu_{2}+O \bigl(\bigl(|\mu_{1}|+|\mu_{2}|\bigr)^{2} \bigr)<0, $$

where

$$\begin{aligned} \mathit{Hom}_{10} =&\displaystyle {\frac{2 ( 2 d-b-\delta d+\delta b ) ^{4}}{ (b -d ) ^{3}{d}^{3}}}, \\ \mathit{Hom}_{01} =&\displaystyle{\frac{ 16 ( 2 d-b-\delta d+\delta b )^{4}}{ (b-d ) ^{3}}}, \\ \mathit{Hom}_{20} =& {\frac{ ( 2 d-b-\delta d+\delta b ) ^{2}}{1800 (b-d ) ^{4}{d}^{6}}} \bigl( -18624 d{ \delta}^{4}{b}^{3}-45048 {\delta}^{4}{d}^{3}b+ 46252 {\delta}^{4}{d}^{2}{b}^{2}+28662 {b}^{3}d{\delta}^{3} \\ &{}-28056 { b}^{3}d{\delta}^{2}+13766 { \delta}^{5}{d}^{3}b-17442 {\delta}^{5}{d} ^{2}{b}^{2}-112536 {d}^{3}\delta b+21384 {d}^{2}\delta {b}^{2} \\ &{}-31236 {d}^{3}{\delta}^{2}b+62472 {d}^{2}{ \delta}^{2}{b}^{2}+87096 { d}^{3}{ \delta}^{3}b-83676 {d}^{2}{\delta}^{3}{b}^{2}+10800 {b}^{3}d \delta \\ &{}+97200 {d}^{3}b+85536 {d}^{4}\delta-2880 {d}^{4}{\delta}^{2}- 31116 {d}^{4}{ \delta}^{3}-32400 {b}^{2}{d}^{2}+15316 { \delta}^{4}{d }^{4} \\ &{}+132 {b}^{4}{\delta}^{2}-966 {b}^{4}{ \delta}^{3}+2104 {\delta} ^{4}{b}^{4}-3976 { \delta}^{5}{d}^{4}-1838 {\delta}^{5}{b}^{4}+568 { \delta}^{6}{d}^{4}+568 {\delta}^{6}{b}^{4} \\ &{}+64800 {d}^{5}\delta- 118800 {d}^{5}{ \delta}^{2}+43200 {d}^{5}{\delta}^{3}+22800 { \delta} ^{4}{d}^{5}-900 {b}^{5}{ \delta}^{3}+3000 {\delta}^{4}{b}^{5} \\ &{}-10600 {\delta}^{5}{d}^{5}-3625 { \delta}^{5}{b}^{5}-1200 {\delta}^{6}{d}^{5 }+1875 {\delta}^{6}{b}^{5}+450 {\delta}^{7}{d}^{5}-375 {\delta}^{7} {b}^{5}-25 {\delta}^{8}{d}^{5} \\ &{}+25 {\delta}^{8}{b}^{5}-49248 {d}^{4} +9490 d{\delta}^{5}{b}^{3}-2272 {\delta}^{6}{d}^{3}b+3408 {\delta}^ {6}{d}^{2}{b}^{2}-2272 d{ \delta}^{6}{b}^{3} \\ &{}-162000 {d}^{4}\delta b+ 129600 {d}^{3}\delta {b}^{2}-32400 {d}^{2}\delta {b}^{3}+291600 { d}^{4}{\delta}^{2}b-216000 {d}^{3}{ \delta}^{2}{b}^{2} \\ &{}+32400 {d}^{2}{ \delta}^{2}{b}^{3}-79200 {d}^{4}{\delta}^{3}b+63900 {d}^{2}{ \delta}^ {3}{b}^{3}+10800 {b}^{4}d{ \delta}^{2}-27000 {b}^{4}d{\delta}^{3} \\ &{}-92400 {\delta}^{4}{d}^{4}b+138900 {\delta }^{4}{d}^{3}{b}^{2}-88800 {\delta}^{4}{d}^{2}{b}^{3}+16500 d{\delta}^{4}{b}^{4}+36200 {\delta} ^{5}{d}^{4}b \\ &{}-41350 {\delta}^{5}{d}^{3}{b}^{2}+12875 { \delta}^{5}{d}^ {2}{b}^{3}+6500 d{ \delta}^{5}{b}^{4}+6600 {\delta}^{6}{d}^{4}b-14475 {\delta}^{6}{d}^{3}{b}^{2} \\ &{}+15825 {\delta}^{6}{b}^{3}{d}^{2}-8625 { \delta}^{6}{b}^{4}d-2175 {\delta}^{7}{d}^{4}b+4200 {\delta}^{7}{d}^{ 3}{b}^{2}-4050 { \delta}^{7}{b}^{3}{d}^{2} \\ &{}+1950 {\delta}^{7}{b}^{4}d+ 125 {\delta}^{8}{d}^{4}b-250 {\delta}^{8}{d}^{3}{b}^{2}+250 {\delta }^{8}{b}^{3}{d}^{2}-125 {\delta}^{8}{b}^{4}d \bigr), \\ \mathit{Hom}_{11} =&{ \frac{\delta ( 2 d-b-\delta d+\delta b ) ^{3}}{450 (b-d ) ^{4}{d}^{3}}} \bigl( 5184 {d}^{3}-750 d{\delta}^{4}{b}^{3}+300 { \delta}^{4}{d}^{3}b+325 {\delta}^{4}{d}^{2}{b}^{2} \\ &{}-900 {b}^{3}d{ \delta}^{3}+900 {b}^{3}d{ \delta}^{2}+950 {\delta}^{5}{d}^{3}b-1350 { \delta}^{5}{d}^{2}{b}^{2}-7428 {d}^{2} \delta b+15972 {d}^{2}{ \delta}^{2}b \\ &{}-7400 {d}^{2}{\delta}^{3}b+5592 {b}^{2}d \delta-9420 {b} ^{2}d{\delta}^{2}+5830 {b}^{2}d{ \delta}^{3}+1704 {\delta}^{4}{d}^{2} b-1704 d{ \delta}^{4}{b}^{2} \\ &{}+4500 {d}^{3}{\delta}^{2}b-3600 {d}^{2}{ \delta}^{2}{b}^{2}-5400 {d}^{3}{ \delta}^{3}b+4350 {d}^{2}{\delta}^{3 }{b}^{2}+2850 {d}^{3}\delta-7986 {d}^{3}{\delta}^{2} \\ &{}+2990 {d}^{3}{ \delta}^{3}-2592 b{d}^{2}-568 {\delta}^{4}{d}^{3}-582 {b}^{3}\delta +1434 {b}^{3}{\delta}^{2}-1420 {b}^{3}{ \delta}^{3}+568 {\delta}^{4} {b}^{3} \\ &{}-1800 {d}^{4}{\delta}^{2}+2100 {d}^{4}{ \delta}^{3}-200 { \delta}^{4}{d}^{4}-150 {b}^{4}{\delta}^{3}+325 {\delta}^{4}{b}^{4}- 250 {\delta}^{5}{d}^{4}-200 {\delta}^{5}{b}^{4} \\ &{}+25 {\delta}^{6}{d}^ {4}+25 {\delta}^{6}{b}^{4}+850 d{\delta}^{5}{b}^{3}-100 {\delta}^{6 }{d}^{3}b+150 {\delta}^{6}{d}^{2}{b}^{2}-100 d{ \delta}^{6}{b}^{3} \bigr), \\ \mathit{Hom}_{02} =&{\frac{8{\delta}^{2} ( 2 d-b-\delta d+\delta b ) ^{4}}{225 (b-d ) ^{4}}} \bigl(1728 {d}^{2}+3006 d \delta b-1136 d{\delta} ^{2}b-2004 \delta {d}^{2}+568 { \delta}^{2}{d}^{2} \\ &{}-1728 bd-1002 \delta {b}^{2}+568 {\delta}^{2}{b}^{2}+432 {b}^{2}-125 {d}^{2}{ \delta}^{3}b+100 {b}^{2}d{\delta}^{3}+75 {\delta}^{4}{d}^{2}b \\ &{}-75d\delta^{4}{b}^{2}+50d^{3}\delta^{3}-25\delta^{4}d^{3}-25 b^{3}\delta^{3}+25\delta^{4}b^{3} \bigr), \end{aligned}$$

and HF 10 and HF 01 are given in (ii).  □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., He, Z. Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model. Nonlinear Dyn 76, 697–715 (2014). https://doi.org/10.1007/s11071-013-1161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1161-8

Keywords

Navigation