Skip to main content
Log in

Tuning the primary resonances of a micro resonator, using piezoelectric actuation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Microbeam dynamics is important in MEMS filters and resonators. In this research, the effect of piezoelectric actuation on the resonance frequencies of a piezoelectrically actuated capacitive clamped-clamped microbeam is studied. The microbeam is sandwiched with piezoelectric layers throughout its entire length. The lower piezoelectric layer is exposed to a combination of a DC and a harmonic excitation voltage. The DC electrostatic voltage is applied to prevent the doubling of the excitation frequency. The traditional resonators are tuned using DC electrostatic actuation, which tunes the resonance frequency only in backward direction on the frequency domain. The proposed model enables tuning the resonance frequencies in both forward and backward directions. For small amplitudes of harmonic excitation and high enough quality factor, the frequency response curves obtained by the shooting method are validated with those of the multiple time scales technique. Unlike the perturbation technique, which imposes limitation on both the amplitude of the harmonic excitation and the quality factor to be applicable, the shooting method can be applied to capture the periodic attractors regardless of how big the amplitude of harmonic excitation and the quality factor are.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Blacksburg (1995)

    Book  Google Scholar 

  2. Younis, M.I.: In: MEMS Linear and Nonlinear Statics and Dynamics, Binghamton, vol. 1, p. 453. Springer, New York (2010)

    Google Scholar 

  3. Azizi, S., et al.: Stabilizing the pull-in instability of an electro-statically actuated micro-beam using piezoelectric actuation. Appl. Math. Model. 35(10), 4796–4815 (2011)

    Article  MATH  Google Scholar 

  4. Younis, M.I., Alsaleem, F.M., Jordy, D.: The response of clamped-clamped microbeams under mechanical shock. Non-Linear Mech. 42, 643–657 (2007)

    Article  Google Scholar 

  5. Rezazadeh, G., Tahmasebi, A., Zubstov, M.: Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage. Microsyst. Technol. 12(12), 1163–1170 (2006)

    Article  Google Scholar 

  6. Najar, F., et al.: Nonlinear analysis of MEMS electrostatic microactuators: primary and second resonances of the first mode. J. Vib. Control 16(9), 1321–1349 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840–1847 (2005)

    Article  Google Scholar 

  8. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for MEMS applications. Nonlinear Dyn. 41, 26 (2005)

    Article  MathSciNet  Google Scholar 

  9. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic analysis of MEMS resonators under primary-resonance excitation. In: ASME 2005 International Design Engineering Technical Conferences & Computers Information in Engineering Conference, Long Beach, California, USA, pp. 397–404 (2005)

    Google Scholar 

  10. Nayfeh, A., Younis, M., Abdel-Rahman, E.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1), 153–163 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Abdel-Rahman, E.M., Nayfeh, A.H., Younis, M.I.: Dynamics of an electrostatically actuated resonant microsensor. In: International Conference on MEMS, NANO and Smart Systems (ICMENS’03). IEEE Press, New York (2003)

    Google Scholar 

  12. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: A nonlinear reduced order model for electrostatic MEMS. In: ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering, Chicago, Illinois, USA (2003)

    Google Scholar 

  13. Azizi, S., et al.: Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn. 73(1–2), 853–867 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Abdel-Rahman, E.M., Nayfeh, A.H.: Secondary resonances of electrically actuated resonant microsensors. J. Micromech. Microeng. 13, 491–501 (2003)

    Article  Google Scholar 

  15. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. DeMartini, B.E., et al.: Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation. J. Microelectromech. Syst. 16(6), 1314–1323 (2007)

    Article  Google Scholar 

  17. Haghighi, S.H., Markazi, A.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3091 (2010)

    Article  Google Scholar 

  18. Francais, O., Dufour, I.: Normalized abacus for the global behavior of diaphragms: pneumatic, electrostatic, piezoelectric or electromagnetic actuation. J. Model. Simul. Microsyst. 1, 149–160 (1999)

    Google Scholar 

  19. Tonnesen, T., et al.: Simulation, design and fabrication of electroplated acceleration switches. J. Micromech. Microeng. 7, 237–245 (1997)

    Article  Google Scholar 

  20. Ananthasuresh, G.K., Gupta, R.K., Senturia, S.D.: An approach to macromodeling of MEMS for nonlinear dynamic simulation. In: Proceedings of the ASME International Conference of Mechanical Engineering Congress and Exposition (MEMS), Atlanta, GA (1996)

    Google Scholar 

  21. Osterberg, P.: Electrostatically Actuated Microelectromechanical Test Structures for Material Property Measurement. Massachusetts Institute of Technology, Boston (1995)

    Google Scholar 

  22. Robinson, C., et al.: Problem encountered in the development of the microscale G-switch using three design approaches. In: Proc. Int. Conf. on Solid-State Sensors and Actuators, Tokyo, Japan, pp. 410–412 (1987)

    Google Scholar 

  23. Frobenius, W.D., et al.: Microminiature ganged threshold accelerometers compatible with integrated circuit technology. IEEE Trans. Electron Devices 19, 37–40 (1972)

    Article  Google Scholar 

  24. Taylor, G.L.: The coalescence of closely spaced drops when they are at different electric potentials. Proc. R. Soc. A, Math. Phys. Eng. Sci. 306, 423–434 (1968)

    Article  Google Scholar 

  25. Nathanson, H.C., et al.: The resonant gate transistor. IEEE Trans. Electron Devices 14, 117–133 (1967)

    Article  Google Scholar 

  26. Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 045013 (2009)

    Article  Google Scholar 

  27. Younis, M.I., Nayfeh, A.H.: A study on the nonlinear response of a resonant microbeam to an electric actuation. J. Nonlinear Dyn. 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  28. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  29. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.H.: A reduced order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12(2), 672–680 (2003)

    Article  Google Scholar 

  30. Vahdat, A.S., Rezazadeh, G.: Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators. J. Franklin Inst. 348(4), 622–639 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Azizi, S., et al.: Parametric excitation of a piezoelectrically actuated system near Hopf bifurcation. Appl. Math. Model. 36(4), 1529–1549 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Azizi, S., et al.: Stability analysis of a parametrically excited functionally graded piezoelectric, MEM system. Current Appl. Phys. 12(2), 456–466 (2012)

    Article  MathSciNet  Google Scholar 

  33. Nayfeh, A.H.: In: Introduction to Perturbation Techniques, vol. 1, p. 519. Wiley, Blacksburg (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ghazavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azizi, S., Ghazavi, M.R., Rezazadeh, G. et al. Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dyn 76, 839–852 (2014). https://doi.org/10.1007/s11071-013-1173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1173-4

Keywords

Navigation