Skip to main content
Log in

A new car-following model with consideration of inter-vehicle communication

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we construct a new car-following model with inter-vehicle communication (IVC) to study the driving behavior under an accident. The numerical results show that the proposed model can qualitatively describe the effects of IVC on each vehicle’s speed, acceleration, movement trail, and headway under an accident and that the new model can overcome the full velocity difference (FVD) model’s shortcoming that collisions occur under an accident, which illustrates that the new model can better describe the driving behavior under an accident than the FVD model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note: the other factors are described by the notation “...” in Eq. (1).

  2. Note that \(a_\mathrm{n}\) is the nth vehicle’s acceleration obtained by the proposed model and that \(\bar{{a}}_\mathrm{n}\) is the nth vehicle acceleration obtained by the FVD model [7].

References

  1. Chowdhury, D., Santen, L., Schreckenberg, A.: Statistics physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  2. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  3. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  4. Bando, M., Hasebe, K., Nakanishi, K.: Phenomenological study of dynamical model of traffic flow. J. Phys. I 5, 1389–1399 (1995)

    Google Scholar 

  5. Herrmann, M., Kerner, S.: Local cluster effect in different traffic flow models. Physica A 255, 163–188 (1998)

    Article  Google Scholar 

  6. Nagatani, T.: Stabilization and enhancement of traffic flow by next-nearest-neighbor interaction. Phys. Rev. E 60, 6395–6401 (1998)

    Article  Google Scholar 

  7. Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for car-following theory. Phys. Rev. E 64, 017101 (2001)

    Article  Google Scholar 

  8. Zhao, X.M., Gao, Z.Y.: A new car-following model: full velocity and acceleration difference model. Eur. Phys. J. B 47, 145–150 (2005)

    Article  Google Scholar 

  9. Li, Y., Sun, D., Liu, W., Zhang, M., Zhao, M., Liao, X., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66, 15–28 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tang, T.Q., Wu, Y.H., Caccetta, L., Huang, H.J.: A new car-following model with consideration of roadside memorial. Phys. Lett. A 375, 3845–3850 (2011)

    Article  MATH  Google Scholar 

  11. Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70, 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  12. Naito, Y., Nagatani, T.: Effect of headway and velocity on safety-collision transition induced by lane changing in traffic flow. Physica A 391, 1626–1635 (2012)

    Article  Google Scholar 

  13. Nagatani, T., Tobita, K.: Vehicular motion in counter traffic flow through a series of signals controlled by a phase shift. Physica A 391, 4976–4985 (2012)

    Article  Google Scholar 

  14. Tobita, K., Nagatani, T.: Effect of signals on two-route traffic system with real-time information. Physica A 391, 6137–6145 (2012)

    Article  Google Scholar 

  15. Nagatani, T.: Nonlinear-map model for bus schedule in capacity-controlled transportation. Appl. Math. Model. 37, 1823–1835 (2013)

    Article  MathSciNet  Google Scholar 

  16. Sugiyama, N., Nagatani, T.: Multiple-vehicle collision in traffic flow by a sudden slowdown. Physica A 392, 1848–1857 (2013)

    Article  Google Scholar 

  17. Lenz, H., Wagner, C.K., Sollacher, R.: Multi-anticipative car-following model. Eur. Phys. J. B 7, 331–335 (1999)

    Article  Google Scholar 

  18. Hoogendoorn, S.P., Ossen, S., Schreuder, M.: Properties of a microscopic heterogeneous multi-anticipative traffic flow model. In: Allsop, R.E., Bell, M.G.H., Heydecker Benjamin, G. (eds.) Transportation and Traffic Theory. Elsevier, Oxford (2007)

    Google Scholar 

  19. Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies and anticipation in microscopic traffic models. Physica A 360, 71–88 (2006)

    Article  Google Scholar 

  20. Lighthill, M.J., Whitham, G.B.: On kinematic waves: II. A theory of traffic flow on long crowed roads. Proc. R. Soc. Lond. 229, 317–345 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  21. Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  22. Payne, H.J.: Models of freeway traffic and control. In: Bekey, G.A. (ed.) Mathematical Models of Public System. Simulation Councils Proceedings Series, vol. 1, pp. 51–61 (1971)

  23. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. B 36, 405–419 (2002)

    Article  Google Scholar 

  24. Bellomo, N., Delitala, M., Coscia, V.: On the mathematical theory of vehicular traffic flow I: fluid dynamic and kinematic modeling. Math. Models Methods Appl. Sci. 12, 1801–1843 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gupta, A.K., Katiyar, V.K.: Analyses of shock waves and jams in traffic flow. J. Phys. A 38, 4063–4069 (2005)

    Article  MathSciNet  Google Scholar 

  26. Gupta, A.K., Katiyar, V.K.: A new anisotropic continuum model for traffic flow. Physica A 368, 551–559 (2006)

    Article  Google Scholar 

  27. Gupta, A.K., Katiyar, V.K.: Phase transition of traffic states with on-ramp. Physica A 371, 674–682 (2006)

    Article  Google Scholar 

  28. Gupta, A.K., Katiyar, V.K.: A new multi-class continuum model for traffic flow. Transportmetrica 3, 73–85 (2007)

    Article  Google Scholar 

  29. Delitala, M., Tosin, A.: Mathematical modelling of vehicular traffic: a discrete kinetic theory approach. Math. Models Methods Appl. Sci. 17, 901–932 (2007)

    Google Scholar 

  30. Bellouquid, A., Delitala, M.: Asymptotic limits of a discrete kinematic theory model of vehicular traffic. Appl. Math. Lett. 24, 672–678 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tang, T.Q., Caccetta, L., Wu, Y.H., Huang, H.J., Yang, X.B.: A macro model for traffic flow on road networks with varying road conditions. J. Adv. Transp. (2011). doi:10.1002/atr.215

  32. Ngoduy, D.: Multiclass first order modelling of traffic networks using discontinuous flow-density relationships. Transportmetrica 6, 121–141 (2010)

    Article  Google Scholar 

  33. Gupta, A.K., Sharma, S.: Nonlinear analysis of traffic jams in an anisotropic continuum model. Chin. Phys. B 19, 110503 (2010)

    Article  MathSciNet  Google Scholar 

  34. Gupta, A.K., Sharma, S.: Analysis of the wave properties of a new two-lane continuum model with the coupling effect. Chin. Phys. B 21, 015201 (2012)

    Article  Google Scholar 

  35. Ngoduy, D.: Multiclass first-order traffic model using stochastic fundamental diagrams. Transportmetrica 7, 111–125 (2011)

    Article  Google Scholar 

  36. Peng, G.H., Nie, Y.F., Cao, B.F., Liu, C.Q.: A driver’s memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 1811–1815 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ngoduy, D.: Effect of driver behaviours on the formation and dissipation of traffic flow instabilities. Nonlinear Dyn. 69, 969–975 (2012)

    Article  MathSciNet  Google Scholar 

  38. Ngoduy, D., Maher, M.J.: Calibration of second order traffic models using continuous cross entropy method. Transp. Res. C 24, 102–121 (2012)

    Article  Google Scholar 

  39. Ngoduy, D.: Instability of cooperative adaptive cruise control traffic flow: a macroscopic approach. Commun. Nonlinear Sci. Numer. Simul. 18, 2838–2851 (2013)

    Article  MathSciNet  Google Scholar 

  40. Ngoduy, D.: Analytical studies on the instabilities of heterogeneous intelligent traffic flow. Commun. Nonlinear Sci. Numer. Simul. 18, 2699–2706 (2013)

    Article  MathSciNet  Google Scholar 

  41. Peng, G.H.: A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system. Nonlinear Dyn. 73, 1035–1043 (2013)

    Article  MATH  Google Scholar 

  42. Tsugawa, S.: Inter-vehicle communications and their applications to intelligent vehicles: an overview. Intell. Veh. Symp. IEEE 2, 564–569 (2002)

    Google Scholar 

  43. Knorr, F., Schreckenberg, M.: Influence of inter-vehicle communication on peak hour traffic flow. Physica A 6, 2225–2231 (2012)

    Article  MathSciNet  Google Scholar 

  44. Jin, W.L., Recker, W.W.: Instantaneous information propagation in a traffic stream through inter-vehicle communication. Transp. Res. B 3, 230–250 (2006)

    Article  Google Scholar 

  45. Kerner, B.S, Klenov, S.L, Brakemeier, A.: Testbed for wireless vehicle communication: a simulation approach based on three-phase traffic theory. In: Intelligent Vehicles Symposium IEEE, pp. 180–185 (2008)

  46. Ngoduy, D., Hoogendoorn, S.P., Liu, R.: Continuum modeling of cooperative traffic flow dynamics. Physica A 13, 2705–2716 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This study has been supported by the National Natural Science Foundation of China (71271016) and the National Basic Research Program of China (2012CB725404). The authors would like to thank the anonymous referees for their helpful comments and valuable suggestions which have improved the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieqiao Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, T., Shi, W., Shang, H. et al. A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn 76, 2017–2023 (2014). https://doi.org/10.1007/s11071-014-1265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1265-9

Keywords

Navigation