Skip to main content
Log in

Conservation laws and Darboux transformation for the coupled cubic–quintic nonlinear Schrödinger equations with variable coefficients in nonlinear optics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, by Darboux transformation and symbolic computation we investigate the coupled cubic–quintic nonlinear Schrödinger equations with variable coefficients, which come from twin-core nonlinear optical fibers and waveguides, describing the effects of quintic nonlinearity on the ultrashort optical pulse propagation in the non-Kerr media. Lax pair of the equations is obtained, and the corresponding Darboux transformation is constructed. One-soliton solutions are derived; some physical quantities such as the amplitude, velocity, width, initial phases, and energy are, respectively, analyzed; and finally an infinite number of conservation laws are also derived. These results might be of some value for the ultrashort optical pulse propagation in the non-Kerr media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Radhakrishnan, R., Kundu, A., Lakshmanan, M.: Coupled nonlinear Schrodinger equations with cubic–quintic nonlinearity: integrability and soliton interaction in non-Kerr media. Phys. Rev. E 60, 3314–3323 (1999)

    Google Scholar 

  2. Zhang, H.Q., Xu, T., Li, J., et al.: Integrability of an N-coupled nonlinear Schrödinger system for polarized optical waves in an isotropic medium via symbolic computation. Phys. Rev. E 77, 026605–026614 (2008)

    MathSciNet  Google Scholar 

  3. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in Optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Google Scholar 

  4. Porsezian, K., Kuriakose, V.C.: Optical Solitons Theoretical and Experimental Challenges. Springer, Berlin (2003)

    Google Scholar 

  5. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University, Oxford (1995)

    MATH  Google Scholar 

  6. Islam, M.N.: Ultrafast Fiber Switching Devices and Systems. Cambridge University, Cambridge (1992)

    Google Scholar 

  7. Newell, A.C., Moloney, J.V.: Nonlinear Optics. Addison-Wesley, Boston (1992)

    Google Scholar 

  8. Zhang, H.Q.: Energy-exchange collisons of vector solitons in the N-coupled mixed derivative nonlinear Schrodinger equations from the birefringent optical fibers. Opt. Commun. 290, 141–145 (2013)

    Google Scholar 

  9. Hong, W.P.: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms. Opt. Commun. 194, 217–223 (2001)

    Google Scholar 

  10. Skarka, V., Berezhiani, V.I., Miklaszewski, R.: Spatiotemporal soliton propagation in saturating nonlinear optical media. Phys. Rev. E 56, 1080–1087 (1997)

    Google Scholar 

  11. Qi, F.H., Tian, B., Lü, X., et al.: Darboux transformation and soliton solutions for the coupled cubic–quintic nonlinear Schrodinger equations in nonlinear optics. Commun. Nonlinear Sci. Numer. Simulat. 17, 2372–2381 (2012)

    MATH  Google Scholar 

  12. Shan, W.R., Qi, F.H., Guo, R., et al.: Conservation laws and solitons for the coupled cubic–quintic nonlinear Schrödinger equations in nonlinear optics. Phys. Scr. 85, 0150021–0150029 (2012)

    Google Scholar 

  13. Wu, X.F., Hua, G.S., Ma, Z.Y.: Novel rogue waves in an inhomogenous nonlinear medium with external potentials. Commun. Nonlinear Sci. Numer. Simul. 18, 3325–3336 (2013)

    MathSciNet  Google Scholar 

  14. Dai, C.Q., Zhu, H.P.: Superposed Akhmediev breather of the (3+1)-dimensional generalized nonlinear Schröinger equation with external potentials. Ann. Phys. 341, 142–152 (2014)

    MathSciNet  Google Scholar 

  15. Lü, X.: Soliton behavior for a generalized mixed nonlinear Schrödinger model with N-fold Darboux transformation. Chaos 23, 033137 (2013)

    Google Scholar 

  16. Zhu, H.P.: Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides. Nonlinear Dyn. 72, 873–882 (2013)

    Google Scholar 

  17. Lü, X., Peng, M.S.: Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications. Nonlinear Dyn. 73, 405–410 (2013)

    MATH  Google Scholar 

  18. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89(013834), 1–7 (2014)

    Google Scholar 

  19. Dattoli, G., Orsitto, F.P., Torre, A.: Evidence for multistability of light solitons in SF6 absorption measurements. Opt. Lett. 14, 456–458 (1989)

    Google Scholar 

  20. Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitons in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 78, 448–451 (1997)

    Google Scholar 

  21. Yan, Z.Y.: Optical solitary wave solutions to nonlinear schrödinger equation with cubic–quintic nonlinearity in non-Kerr media. J. Phys. Soc. Jpn. 73, 2397–2401 (2004)

    Google Scholar 

  22. Zong, F.D., Dai, C.Q., Zhang, J.F.: Optical solitary waves in fourth-order dispersive nonlinear Schrödinger equation with self-steepening and self-frequency shift. Commun. Theor. Phys. 45, 721–726 (2006)

    MathSciNet  Google Scholar 

  23. Kundu, A.: Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equation. J. Math. Phys. 25, 3433–3438 (1984)

    MathSciNet  Google Scholar 

  24. Levi, D., Scimiterna, C.: The Kundu–Eckhaus equation and its discretizations. J. Phys. A 42, 465203–465210 (2009)

    MathSciNet  Google Scholar 

  25. Wang, M.L., Zhang, J.L., Li, X.Z.: Solitary wave solutions of a generalized derivative nonlinear Schrödinger equation. Commun. Theor. Phys. 50, 39–42 (2008)

    MathSciNet  Google Scholar 

  26. Johnson, R.S.: On the modulation of water waves in the neighbourhood of \(kh\,\approx \) 1.363. Proc. Roy. Soc. London A 357, 131–141 (1977)

    MATH  Google Scholar 

  27. Kodama, Y.: Optical solitons in a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)

    MathSciNet  Google Scholar 

  28. Albuch, L., Malomed, B.A.: Transitions between symmetric and asymmetric solitons in dual-core systems with cubic–quintic nonlinearity. Math. Comput. Simulat. 74, 312–322 (2007)

    MATH  MathSciNet  Google Scholar 

  29. Hisakado, M., Wadati, M.J.: Gauge transformations among generalised nonlinear Schrödinger equations. Phys. Soc. Jpn 63, 3962–3966 (1994)

    MATH  MathSciNet  Google Scholar 

  30. Li, S.Q., Li, L., Li, Z.H., et al.: Properties of soliton solutions on a cw background in optical fibers with higher-order effects. Opt. Soc Am. 21, 2089–2094 (2004)

    Google Scholar 

  31. Tian, B., Gao, Y.T., Zhu, H.W.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: variable-coefficient bilinear form, Bäcklund transformation, brightons and symbolic computation. Phys. Lett. A 366, 223–229 (2007)

    MATH  Google Scholar 

  32. Tian, B., Wei, G.M., Zhang, C.Y., et al.: Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels, Bose-Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A 356, 8–16 (2006)

    MATH  Google Scholar 

  33. Yan, Z.Y., Zhang, H.Q.: Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces. J. Phys. A 34, 1785–1792 (2001)

    MATH  MathSciNet  Google Scholar 

  34. Das, G., Sarma, J.: Response to comment on a new mathematical approach for finding the solitary waves in dusty plasma [Phys. Plasmas 6, 4392 (1999)]. Phys. Plasmas 6(4394), 1–4 (1999)

    Google Scholar 

  35. Wang, Y.F., Tian, B., Wang, P., et al.: Bell-polynomial approach and soliton solutions for the Zhiber–Shabat equation and (2+1)-dimensional Gardner equation with symbolic computation. Nonlinear Dyn. 69, 2031–2040 (2012)

    Google Scholar 

  36. Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 18, 2426–2435 (2013)

    MathSciNet  Google Scholar 

  37. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn 74, 701–709 (2013)

    MathSciNet  Google Scholar 

  38. Ablowitz, M.J., Kaup, D.J., Newell, A.C., et al.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    MATH  MathSciNet  Google Scholar 

  39. Li, J., Zhang, H.Q., Xu, T., et al.: Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schrödinger equation from inhomogeneous optical fibers with symbolic computation. J. Phys. A 40, 13299–13309 (2007)

    Google Scholar 

  40. Porsezian, K., Nakkeeran, K.: Optical solitons in presence of Kerr dispersion and self-frequency shift. Phys. Rev. Lett. 76, 3955–3958 (1996)

    Google Scholar 

  41. Li, J., Zhang, H.Q., Xu, T., et al.: Symbolic computation on the multi-soliton-like solutions of the cylindrical Kadomtsev–Petviashvili equation from dusty plasmas. J. Phys. A 40, 7643–7657 (2007)

    MATH  MathSciNet  Google Scholar 

  42. Li, Y.S.: Soliton and Integrable System. Shanghai Scientific and Technological Education Publishing, Shanghai (1999)

    Google Scholar 

  43. Wadati, M., Sanuki, H., Konno, K.: Relationships among inverse method, Bäcklund transformation and an infinite number of conservation Laws. Prog. Theor. Phys. 53, 419–436 (1975)

    MATH  MathSciNet  Google Scholar 

  44. Zhang, D.J., Chen, D.Y.: The conservation laws of some discrete soliton systems. Chaos Solitons Frac. 14, 573–579 (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to all the members of our discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant No. 11101421, the Special Foundation for Young Scientists of Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences under Grant No. Y1S01500CX, and the Scientific Research Project of Beijing Educational Committee (No. SQKM201211232016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Hua Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, FH., Ju, HM., Meng, XH. et al. Conservation laws and Darboux transformation for the coupled cubic–quintic nonlinear Schrödinger equations with variable coefficients in nonlinear optics. Nonlinear Dyn 77, 1331–1337 (2014). https://doi.org/10.1007/s11071-014-1382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1382-5

Keywords

Navigation