Skip to main content
Log in

Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the robust task-space control of electrically driven robot manipulators using voltage control strategy. In conventional robust control approaches, the uncertainty bound is needed to design the control law. Usually, this bound is proposed conservatively which may increase the amplitude of the control signal and damage the system. Moreover, calculation of this bound requires some feedbacks of the system states which providing them may be expensive. The novelty of this paper is proposing a robust control law in which the uncertainty bound is calculated by Legendre polynomials. Compared to conventional robust controllers, the proposed controller is simpler, less computational and requires less feedbacks. Simulation results and comparisons verify the effectiveness of the proposed control approach applied on a SCARA robot manipulator driven by permanent magnet DC motors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cheah, C.C., Hirano, M., Kawamura, S., Arimoto, S.: Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE J. Robot. Autom. 19(4), 692–702 (2003)

    Article  Google Scholar 

  2. Liu, C., Cheah, C.C., Slotine, J.J.E.: Adaptive Jacobian tracking control of rigid-link electrically driven robots based on visual task-space information. Automatica 42, 1491–1501 (2006)

  3. Cheah, C.C., Liu, C., Slotine, J.J.E.: Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans. Autom. control 51(6), 1024–1029 (2006)

    Article  MathSciNet  Google Scholar 

  4. Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators. IEEE Press Inc, New York (1996)

    MATH  Google Scholar 

  5. Sage, H.G., De Mathelin, M.F., Ostertag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72(16), 1498–1522 (1999)

  6. Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control for rigid robots. IEEE Control Syst. Mag. 11, 24–30 (1991)

    Article  Google Scholar 

  7. Corless, M.J.: Control of uncertain nonlinear systems. ASME Trans. J. Dyn. Syst. Meas. Control 115(2B), 362–372 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control Autom. Syst. 6(5), 702–712 (2008)

    Google Scholar 

  9. Orrante-Sakanassi, J., Santibañez, V., Moreno-Valenzuela, J.: Stability analysis of a voltage-based controller for robot manipulators. Int. J. Adv. Robot. Syst. (2013). doi:10.5772/53894

  10. Fateh, M.M., Khorashadizadeh, S.: Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dyn. 69, 1465–1477 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fateh, M.M.: Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn. 61(4), 655–666 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fateh, M.M.: Robust control of electrical manipulators by joint acceleration. Int. J. Innov. Comput. Inf. Control 6(12), 5501–5510 (2010)

  13. Fateh, M.M., Khorashadizadeh, S.: Optimal robust voltage control of electrically driven robots. Nonlinear Dyn. 70, 1445–1458 (2012)

    Article  MathSciNet  Google Scholar 

  14. Fateh, M.M.: Robust voltage control of electrical manipulators in task-space. Int. J. Innov. Comput. Inf. Control. 6(6), 2691–2700 (2010)

    Google Scholar 

  15. Fateh, M.M.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67, 2549–2559 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fateh, M.M.: Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn. 67, 1525–1537 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chien, M.C., Huang, A.C.: Regressor-free adaptive impedance control of flexible-joint robots using FAT. In: Proceedings of the 2006 American Control Conference, pp. 3904–3909 (2006)

  18. Chien, M.C., Huang, A.C.: Adaptive impedance controller design for flexible-joint electrically-driven robots without computation of the regressor matrix. Robotica 30, 133–144 (2012)

    Article  Google Scholar 

  19. Kreyszig, E.: Advanced Engineering Mathematics. Wiley, NY (2007)

    Google Scholar 

  20. Talole, S.E., Kolhe, J.P., Phadke, S.B.: Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans. Ind. Electron. 57(4), 1411–1419 (2010)

  21. Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)

    Article  Google Scholar 

  22. Li, Y., Tong, S., Li, T.: Fuzzy adaptive dynamic surface control for a single-link flexible-joint robot. Nonlinear Dyn. 70, 2035–2048 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peng, J., Wang, J., Wang, Y.: Neural network based robust hybrid control for robotic system: an H \(_{\infty }\) approach. Nonlinear Dyn. 65, 421–431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Garcia-Hernandez, R., Sanchez, E., Bayro-Corrochano, E., Santibanez, V., Ruz-Hernandez, J.: Real-time decentralized neural block control: application to a two DOF robot manipulator. Int. J. Innov. Comput. Inf. Control 7(3), 1075–1085 (2011)

    Google Scholar 

  25. Puga-Guzmán, S., Moreno-Valenzuela, J., and Santibáñez, V.: Adaptive neural network motion control of manipulators with experimental evaluations. Sci. World J. Article ID 694706, 13, (2014) doi:10.1155/2014/694706.

  26. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, New York (1997)

    MATH  Google Scholar 

  27. Yang, S.S., Tseng, C.S.: An orthogonal neural network for function approximation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(5), 779–784 (1996)

    Article  Google Scholar 

  28. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modelling and Control. Wiley, Hoboken (2006)

    Google Scholar 

  29. Fateh, M.M., Babaghasabha, R.: Impedance control of robots using voltage control strategy. Nonlinear Dyn. 74, 277–286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Fateh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorashadizadeh, S., Fateh, M.M. Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation. Nonlinear Dyn 79, 1151–1161 (2015). https://doi.org/10.1007/s11071-014-1730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1730-5

Keywords

Navigation