Skip to main content
Log in

Structure and parameter identification for Bayesian Hammerstein system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider the structure and parameter identification problem for Bayesian Hammerstein system. A structure identification algorithm is proposed, in which the system order, system parameters and regularization parameters are all unknown in the considered system. The joint posterior distribution of system parameters and the value of basis functions \(k\) are obtained via sampling theory. The proposed identification algorithm is based on the reversible jump Markov chain Monte Carlo method. There are two main characteristics of the algorithm: (i) By using the birth move and death move strategy, the parameter \(k\) is searched quickly in the number of basis functions space until the suitable value of \(k\) is found. (ii) The distributions of system parameters are changed with the value of \(k\) in the Bayesian framework, and the parameters are successfully found after the value of \(k\) is stable. Two examples are provided to show the effectiveness of the proposed algorithm. The performances of the algorithm are validated with the results of statistical analyses including parameter estimate error, MSE, NRMSE, MAD, Theils inequality coefficient, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ding, F., Peter Liu, X.P., Liu, G.J.: Identification methods for Hammerstein nonlinear systems. Dig. Signal Process. 21, 215–238 (2011)

    Article  Google Scholar 

  2. Ding, F., Shi, Y., Chen, T.W.: Gradient-based identification methods for Hammerstein nonlinear ARMAX models. Nonlinear Dyn. 45(1), 31–43 (2005)

    MathSciNet  Google Scholar 

  3. Li, J.H., Ding, F., Hua, L.: Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems. Nonlinear Dyn. 75(1), 235–245 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ding, J., Ding, F., Peter Liu, X.P., Liu, G.J.: Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data. IEEE Trans. Autom. Control 56(11), 2677–2683 (2011)

    Article  Google Scholar 

  5. Liu, X.G.: Least squares based iterative identification for a class of multirate systems. Automatica 46(3), 549–554 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Han, X.Q., Xie, L., Ding, F., Liu, X.G.: Hierarchical least-squares based iterative identification for multivariable systems with moving average noises. Math. Comput. Model. 51(9–10), 1213–1220 (2010)

    Article  MATH  Google Scholar 

  7. Zhang, Z.N., Ding, F., Liu, X.G.: Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems. Comput. Math. Appl. 61(3), 672–682 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Greblicki, W.: Nonlinearity estimation in Hammerstein systems based on ordered observations. IEEE Trans. Signal Process. 44(5), 1224–1233 (1996)

    Article  Google Scholar 

  9. Haber, R., Unbehauen, H.: Structure identification of nonlinear dynamic systems—a survey of input/output approaches. Automatica 26(4), 651–677 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Prakriya, S., Hatzinakos, D.: Blind identification of linear subsystems of LTI-ZMNL-LTI models with cyclostationary inputs. IEEE Trans. Signal Process. 45(8), 2023–2036 (1997)

    Article  Google Scholar 

  11. Chaudhary, N.I., Raja, M.A.Z., Khan, J.A., Aslam, M.S.: Identification of input nonlinear control auto-regressive systems using fractional signal processing approach. Sci World J. doi:10.1155/2013/467276 (2013)

  12. Sun, J.L., Liu, X.G.: A novel APSO-aided maximum likelihood identification method for Hammerstein systems. Nonlinear Dyn. 73(1–2), 449–462 (2013)

    Article  MATH  Google Scholar 

  13. Narendra, K.S., Gallman, P.G.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Autom. Control 11(3), 546–550 (1966)

    Article  Google Scholar 

  14. Chang, F., Luus, R.: A noniterative method for identification using Hammerstein model. IEEE Trans. Autom. Control 16, 464–468 (1971)

    Article  Google Scholar 

  15. Bai, E.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chang, F., Luus, R.: A noniterative method for identification using Hammerstein model. IEEE Trans. Automat. Control 16(5), 464–468 (1971)

    Article  Google Scholar 

  17. Bilings, S.A., Fakhouri, S.Y.: Identification of a class of nonlinear systems using correlation analysis. Proc. Inst. Elect. Eng. 125(7), 691–697 (1978)

    Article  Google Scholar 

  18. Bai, E.W., Fu, M.: A blind approach to Hammerstein model identification. IEEE Trans. Signal Process. 50(7), 1610–1619 (2002)

    Article  Google Scholar 

  19. Zahoor, R.M.A., Qureshi, I.M.: A modified least mean square algorithm using fractional derivative and its application to system identification. Eur. J. Sci. Res 35(1), 14–21 (2009)

    Google Scholar 

  20. Aslam, M.S., Zahoor, R.M.A.: A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach. Signal Process. J. doi:10.1016/j.sigpro.2014.04.012

  21. Shah, S.M., Samar, R., Raja, M.A.Z., Chambers, J.A.: Fractional normalized filtered-error least mean squares algorithm for application in active noise control systems. Electron. Lett. 50(14), 973–975 (2014)

    Article  Google Scholar 

  22. Zahoor, R.M.A., Chaudhary, N.I.: Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process. J. doi:10.1016/j.sigpro.2014.06.015

  23. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–478 (1978)

    Article  MATH  Google Scholar 

  25. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–467 (1985)

    Article  Google Scholar 

  26. Ninness, B., Henriksen, S.: Bayesian system identification via Markov chain Monte Carlo techniques. Automatica 46, 40–51 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Baldacchino, T., Anderson, S.R., Kadirkamanathan, V.: Computational system identification for Bayesian NARMAX modelling. Automatica 49, 2641–2651 (2013)

    Article  MathSciNet  Google Scholar 

  28. redrik Lindstena, F., Schon, T.B., Jordanb, M.I.: Bayesian semiparametric Wiener system identification. Automatica 49, 2053–2063 (2013)

    Article  Google Scholar 

  29. Robert, C.P., Ryde, T., Titterington, D.M.: Bayesian inference in hidden Markov models through jump Markov chain Monte Carlo. J. R. Stat. Soc. Ser. B 62(1), 57–75 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  31. Vermaak, J., Andrieu, C., Doucet, A., Godsill, S.J.: Reversible jump Markov chain Monte Carlo strategies for Bayesian model selection in autoregressive processes. J. Time Ser. Anal. 25(6), 785–809 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hastings, W.K.: Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  Google Scholar 

  33. Ninness, B., Henriksen, S.: Bayesian system identification via Markov chain Monte Carlo techniques. Automatica 46(1), 40–51 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vermaak, J., Andrieu, C., Doucet, A., Godsill, S.J.: Bayesian model selection of autoregressive processes. Technical Report. University of Cambridge, Department of Engineering, Cambridge, UK (2000)

  35. Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)

  36. Besag, J.: A candidate’s formula—a curious result in Bayesian prediction. Biometrika 76, 183 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper is partially supported by the Science Fund for Hundred Excellent Innovation Talents Support Program of Hebei Province, Doctoral Fund of Ministry of Education of China (20121333110008), Hebei Province Applied Basis Research Project (13961806D), Hebei Province Development of Social Science Research Project (201401315) and the National Natural Science Foundation of China (61273260, 61290322, 61273222, 61322303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Hua, C. & Guan, X. Structure and parameter identification for Bayesian Hammerstein system. Nonlinear Dyn 79, 1847–1861 (2015). https://doi.org/10.1007/s11071-014-1779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1779-1

Keywords

Navigation