Skip to main content

Advertisement

Log in

Nonlinear analysis of energy harvesting systems with fractional order physical properties

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An electromechanical energy harvesting system with a fractional order current–voltage relationship for the electrical circuit and fractional power law in the restoring force of its mechanical part is considered to act as an energy harvester. Our results show that, under a single-well potential configuration, for a small amplitude of the perturbation, as the order of derivative increases, the resonant amplitude of mechanical vibration decreases while the bending degree (hardening case) remains fairly constant. For a large amplitude of the perturbation, the output power is increased due to the hardening effects. Under a double-well configuration, the fractional power stiffness \(\alpha \) strongly affects the crossing well dynamics (large amplitude motion) and consequently the output electrical power. The harvested electric power appears to be maximal for deterministic and random excitation for small \(\alpha \). High-level noise intensity is found to reduce the output power in the region of resonance and surprisingly increases the output in other regions of \(\alpha \). For sufficiently large amplitude of harmonic excitation, this effect is realized in a stochastic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Chichester (2011)

    Book  Google Scholar 

  2. Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292(3–5), 987–998 (2006)

    Article  Google Scholar 

  3. Shahruz, S.M.: Increasing the efficiency of energy scavengers by magnets. J. Comput. Nonlinear Dyn. 3(4), 041,001 (2008)

    Article  Google Scholar 

  4. Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2010)

    Article  MATH  Google Scholar 

  5. Stanton, S.C., Mann, B.P., Owens, B.A.: Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments. Phys. D Nonlinear Phenom. 241(6), 711–720 (2012)

    Article  Google Scholar 

  6. Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–288 (1998)

    Article  Google Scholar 

  7. Litak, G., Borowiec, M., Syta, A.: Vibration of generalized double well oscillators. ZAMM 87, 590–602 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96(21), 214103 (2010)

    Article  Google Scholar 

  9. Borowiec, M., Rysak, A., Betts, D.H., Bowen, C.R., Kim, H.A., Litak G.: Complex response of the bistable laminated plate: multiscale entropy analysis. Eur. Phys. J. Plus. 129, 211 (2014)

  10. Kwuimy, C.A.K., Litak, G., Borowiec, M., Nataraj, C.: Performance of a piezoelectric energy harvester driven by air flow. Appl. Phys. Lett. 100(2), 024,103–3 (2012)

  11. Tekam, G.O., Tchuisseu, E.T., Kwuimy, C., Woafo, P.: Analysis of an electromechanical energy harvester system with geometric and ferroresonant nonlinearities. Nonlinear Dyn. 76(2), 1561–1568 (2014)

    Article  Google Scholar 

  12. Owens, B.A., Mann, B.P.: Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. J. Sound Vib. 331(4), 922–937 (2012)

    Article  Google Scholar 

  13. Li, C.: Keynote lecture: “Fractional dynamics: an overview and some challenges”. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference ((IDETC)/CIE) (2013)

  14. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)

    Article  MathSciNet  Google Scholar 

  15. Duarte, F., Machado, J.A.T.: Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29(1–4), 315–342 (2002)

    Article  MATH  Google Scholar 

  16. Agrawal, O.: Application of Fractional Derivatives in Thermal Analysis of Disk Brake. Nonlinear Dyn. 38, 191–206 (2004)

    Article  MATH  Google Scholar 

  17. Ngueuteu, G.M., Woafo, P.: Dynamics and synchronization analysis of coupled fractional-order nonlinear electromechanical systems. Mech. Res. Commun. 46, 20–25 (2012)

    Article  Google Scholar 

  18. Cao, J., Zhou, S., Inman, D.J., Chen, Y.: Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn. (in press) (2014)

  19. Machado, J.A.T., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G., Galhano, A.F.: Some applications of fractional calculus in engineering. Math. Probl. Eng. ID 639801, 1–34 (2010)

  20. Silva, M.F., Machado, J.A.T.: Fractional order \(pd^{\mu }\) joint control of legged robots. J. Vib. Control 12(12), 1483–1501 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Syta, A., Litak, G., Lenci, S., Scheffler, M.: Chaotic vibrations of the duffing system with fractional damping. Chaos 24, 013,107 (2014)

  22. Cveticanin, L., Zukovic, M.: Melnikov’s criteria and chaos in systems with fractional order deflection. J. Sound Vib. 326(3–5), 768–779 (2009)

    Article  Google Scholar 

  23. Cveticanin, L.: Oscillator with fraction order restoring force. J. Sound Vib. 320(4–5), 1064–1077 (2009)

    Article  Google Scholar 

  24. Lewis, G., Monasa, F.: Large deflections of cantilever beams of non-linear materials. Comput. Struct. 14, 357–360 (1981)

    Article  Google Scholar 

  25. Lee, K.: Large deflections of cantilever beams of non-linear elastic material under a combined loading. Int. J. Non-Linear Mech. 37, 439–443 (2002)

    Article  MATH  Google Scholar 

  26. Bank, B., Zambon, S., Fontana, F.: A modal-based real-time piano synthesizer. IEEE Trans. Audio Speech Lang. Process. 18, 809–821 (2010)

  27. Shatarat, N., Al-Sadder, S., Katkhuda, H., Qablan, H., Shatnawi, A.: Behavior of a rhombus frame of nonlinear elastic material under large deflection. Int. J. Mech. Sci. 51, 166–177 (2009)

    Article  MATH  Google Scholar 

  28. Patten, W.N., Sha, S., Mo, C.: A vibration model of open celled polyurethane foam automotive seat cushions. J. Sound Vib. 217(1), 145–161 (1998)

  29. Tripathy, M.C., Mondal, D., Biswas, K., Sen, S.: Experimental studies on realization of fractional inductors and fractional-order bandpass filters. Int. J. Circuit Theory Appl. (2014). doi:10.1002/cta.2004

  30. Kwuimy, C.A.K., Nbendjo, B.R.N.: Active control of horseshoes chaos in a driven Rayleigh oscillator with fractional order deflection. Phys. Lett. A 375(39), 3442–3449 (2011)

    Article  MATH  Google Scholar 

  31. Kwuimy, C.A.K., Nbendjo, B.N., Woafo, P.: Optimization of electromechanical control of beam dynamics: analytical method and finite differences simulation. J. Sound Vib. 298(1–2), 180–193 (2006)

    Article  Google Scholar 

  32. Kwuimy, C.A.K., Woafo, P.: Dynamics, chaos and synchronization of self-sustained electromechanical systems with clamped-free flexible arm. Nonlinear Dyn. 53(3), 201–213 (2008)

    Article  MATH  Google Scholar 

  33. Stanton, S.C., Owens, B.A., Mann, B.P.: Harmonic balance analysis of the bistable piezoelectric inertial generator. J. Sound Vib. 331(15), 3617–3627 (2012)

    Article  Google Scholar 

  34. Ducharne, B., Zhang, B., Guyomar, D., Sebald, G.: Fractional derivative operators for modeling piezoelectric polarization behaviours under dynamic mechanical stress excitation. Sensors Actuators A 189, 74–79 (2013)

    Article  Google Scholar 

  35. Nayfeh, A.H., Mook, D.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

  36. Chen, L., Zhu, W.: Stochastic jump and bifurcation of duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations. Int. J. Non-Linear Mech. 46(10), 1324–1329 (2011)

    Article  Google Scholar 

  37. Leung, A., Guo, Z.: Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping. Commun. Nonlinear Sci. Numer. Simul. 16(4), 2169–2183 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Leung, A., Yang, H., Guo, Z.: The residue harmonic balance for fractional order van der Pol like oscillators. J. Sound Vib. 331(5), 1115–1126 (2012)

    Article  Google Scholar 

  39. Xiao, M., Zheng, W.X., Cao, J.: Approximate expressions of a fractional order van der pol oscillator by the residue harmonic balance method. Math. Comput. Simul. 89, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  40. Litak, G., Borowiec, M.: On simulation of a bistable system with fractional damping in the presence of stochastic coherence resonance. Nonlinear Dyn. 77(3), 681–686 (2014)

    Article  MathSciNet  Google Scholar 

  41. Shen, Y., Yang, S., Xing, H., Ma, H.: Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives. Int. J. Non-Linear Mech. 47, 975–983 (2012)

    Article  Google Scholar 

  42. Ruzziconi, L., Litak, G., Lenci, S.: Nonlinear oscillations, transition to chaos and escape in the Duffing system with non-classical damping. J. Vib. Eng. 13, 22–38 (2011)

    Google Scholar 

  43. Litak, G., Borowiec, M., Friswell, M.I., Adhikari, S.: Energy harvesting in a magnetopiezoelastic system driven by random excitations with uniform and Gaussian distributions. J. Theor. Appl. Mech. 49, 757 (2011)

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the US Office of Naval research (CAKK and CN) under the Grant ONR N00014-08-1-0435 (Program manager: Mr. Anthony Seman III) and by the Polish National Science Center (GL) under Grant Agreement 2012/05/B/ST8/00080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Kitio Kwuimy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitio Kwuimy, C.A., Litak, G. & Nataraj, C. Nonlinear analysis of energy harvesting systems with fractional order physical properties. Nonlinear Dyn 80, 491–501 (2015). https://doi.org/10.1007/s11071-014-1883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1883-2

Keywords

Navigation