Skip to main content
Log in

Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To attenuate the effects of parameter variations and disturbances of flexible spacecrafts on attitude control accuracy and stability, a composite control approach by combining nonlinear disturbance observer (NDO) and feedback linearization (FBL) control is proposed. In this paper, the multiple disturbances that act on spacecrafts from flexible appendages, space environment, and unmodelled dynamics are considered as an ‘equivalent’ disturbance. The proposed NDO is used to estimate and compensate for the disturbances through feedforward. Stability and tracking performance of the NDO are then analyzed. Moreover, the stability of the FBL + NDO composite control approach is established through the Lyapunov method. Simulation results show that the NDO can estimate disturbances and reduce the effect of disturbances on spacecrafts through feedforward compensation. Robust dynamic performance and attitude control accuracy are effectively improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu, H., Guo, L., Zhang, Y.M.: An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. Nonlinear Dyn. 67, 2081–2088 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hu, Q.: Robust adaptive sliding-mode fault-tolerant control with L\(_{2}\)-gain performance for flexible spacecraft using redundant reaction wheels. IET Control Theory Appl. 4(6), 1055–1070 (2009)

    Article  Google Scholar 

  3. Breakwell, J.A.: Optimal feedback slewing of flexible spacecraft. J. Guid. Control 4(5), 472–479 (1981)

    Article  Google Scholar 

  4. Ben-Asher, J., Burns, J.A., Cliff, E.: Time-optimal slewing of flexible spacecraft. J. Guid. Control Dyn. 15(2), 360–367 (1992)

    Article  MATH  Google Scholar 

  5. Lo, S.C., Chen, Y.P.: Smooth sliding-mode control design for spacecraft attitude tracking maneuvers. J. Guid. Control Dyn. 18(6), 1345–1349 (1995)

    Article  MATH  Google Scholar 

  6. Hu, Q.L., Wang, Z.D., Gao, H.J.: Sliding mode and shaped input vibration control of flexible systems. IEEE Trans. Aerosp. Electron. Syst. 44(2), 503–519 (2008)

    Article  Google Scholar 

  7. Hu, Q.L., Xiao, B., Wang, D.W., Poh, E.K.: Attitude control of spacecraft with actuator uncertainty. J. Guid. Control Dyn. 36(6), 1771–1776 (2013)

    Article  Google Scholar 

  8. Luo, W.C., Chu, Y.C., Ling, K.V.: H\(_\infty \) Inverse optimal attitude-tracking control of rigid spacecraft. J. Guid. Control Dyn. 28(3), 481–493 (2005)

    Article  Google Scholar 

  9. Hu, Q., Xiao, B., Friswell, M.I.: Fault tolerant control with \(\text{ H }_\infty \) performance for attitude tracking of flexible spacecraft. IET Control Theory Appl. 6(10), 1388–1399 (2012)

    Article  MathSciNet  Google Scholar 

  10. Anton, H.J.: Adaptive spacecraft attitude tracking control with actuator saturation. J. Guid. Control Dyn. 33(5), 1692–1695 (2010)

    Article  Google Scholar 

  11. Chen, Z.Y., Huang, J.: Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans. Autom. Control 54(3), 600–605 (2009)

    Article  Google Scholar 

  12. Bustan, D., Sani, S.K., Pariz, N.: Adaptive fault-tolerant spacecraft attitude control design with transient response control. IEEE Trans. Mechatron. 19(4), 1404–1411 (2014)

  13. Ali, I., Radice, G., Kim, J.: Backstepping control design with actuator torque bound for spacecraft attitude maneuver. J. Guid. Control Dyn. 33(1), 254–259 (2010)

    Article  Google Scholar 

  14. Aicardi, M., Cannata, G., Casalino, G.: Attitude feedback control: unconstrained and nonholonomic constrained cases. J. Guid. Control Dyn. 23(4), 657–664 (2000)

    Article  Google Scholar 

  15. Bang, H., Myung, H.S., Tahk, M.J.: Nonlinear momentum transfer control of spacecraft by feedback linearization. J. Spacecr. Rockets 39(6), 866–873 (2002)

    Article  Google Scholar 

  16. Sinclair, A.J., Hurtado, J.E., Junkins, J.L.: Linear feedback control using quasi velocities. J. Guid. Control Dyn. 29(6), 1309–1314 (2006)

    Article  Google Scholar 

  17. Malekzadeh, M.: Flexible spacecraft control using robust feedback linearization. In: Proceedings of 2010th AIAA Guidance, Navigation, and Control Conference. Toronto: American Institute of Aeronautics and Astronautics. AIAA-8295 (2010)

  18. Yao, X.M., Guo, L.: Composite anti-disturbance control for markovian jump nonlinear systems via disturbance observer. Automatica 49, 2538–2545 (2013)

    Article  MathSciNet  Google Scholar 

  19. Wei, X.J., Guo, L.: Composite disturbance-observer-based control and terminal sliding mode control for nonlinear systems with disturbances. Int. J. Control 82(6), 1082–1098 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen, M., Chen, W.H.: Sliding mode control for a class of uncertain nonlinear system based on disturbance observer. Int. J. Adapt. Control Signal Process. 24, 51–64 (2010)

    MATH  Google Scholar 

  21. Qian C. S., Sun C. Y., Huang Y. Q., et al.: Design of flight control system for a hypersonic gliding vehicle based on nonlinear disturbance observer. In: Proceedings of the 10th IEEE International Conference on Control and Automation. Hangzhou: IEEE press. 1573–1577 (2013)

  22. Wen X.Y., Guo L.: Estimation and rejection for disturbances using composite nonlinear observer. In: Proceedings of 2010 International Conference on Networking, Sensing and Control. 280–284(2010)

  23. Malekzadeh, M., Naghash, A., Talebi, H.A.: A robust nonlinear control approach for tip position tracking of flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2423–2434 (2011)

    Article  Google Scholar 

  24. Kristiansen, R., Nicklasson, P.J., Gravdahl, J.T.: Satellite attitude control by quaternion-based backstepping. IEEE Trans. Control Syst. Technol. 17(1), 227–232 (2009)

    Article  Google Scholar 

  25. Xia, Y.Q., Zhu, Z., Fu, M.Y., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647–659 (2011)

    Article  Google Scholar 

  26. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China 10772011, the National Basic Research Program of China (973 Program) 2012CB720003, and the Fundamental Research Funds for the Central Universities YWF-10-01- A22

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, Z. Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dyn 81, 257–264 (2015). https://doi.org/10.1007/s11071-015-1987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1987-3

Keywords

Navigation