Skip to main content
Log in

Stochastic resonance in a harmonic oscillator with fractional-order external and intrinsic dampings

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the phenomenon of stochastic resonance (SR) in a harmonic oscillator with fractional-order external and intrinsic dampings under the external periodic force is investigated. Applying the Shapiro–Loginov formula, fractional Shapiro–Loginov formula, generalized fractional Shapiro–Loginov formula and the Laplace transform technique, we obtain the analytic expressions of the first moment and the amplitude of the output signal. By studying the impacts of the driving frequency, system parameters and the noise parameters, we find the non-monotonic behaviors of the output amplitude. The results indicate that the bona fide SR, the generalized SR and the conventional SR phenomena occur in the proposed model. Furthermore, the numerical simulations are presented to verify the effectiveness of the analytic result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang, T.T., Zhang, H.Q., Xu, Y., Xu, W.: Stochastic resonance in coupled underdamped bistable systems driven by symmetric trichotomous noises. Int. J. Non-Linear Mech. 67, 42–47 (2014)

    Article  Google Scholar 

  2. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453–457 (1981)

    Article  MathSciNet  Google Scholar 

  3. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)

    Article  Google Scholar 

  4. Nicolis, C.: Stochastic aspects of climatic transitions: response to a periodic forcing. Tellus 34, 1–9 (1982)

    Article  MathSciNet  Google Scholar 

  5. Berdichevsky, V., Gitterman, M.: Multiplicative stochastic resonance in linear systems: analytical solution. Europhys. Lett. 36, 161 (1996)

    Article  Google Scholar 

  6. Fulinski, A.: Relaxation, noise-induced transitions, and stochastic resonance driven by non-Markovian dichotomic noise. Phys. Rev. E 52, 4523 (1995)

    Article  Google Scholar 

  7. Jia, Y., Yu, S.N., Li, J.R.: Stochastic resonance in a bistable system subject to multiplicative and additive noise. Phys. Rev. E 62, 1869 (2000)

    Article  Google Scholar 

  8. Inchiosa, M.E., Bulsara, A.R.: Signal detection statistics of stochastic resonators. Phys. Rev. E 53, R2021 (1996)

    Article  Google Scholar 

  9. Berdichevsky, V., Gitterman, M.: Stochastic resonance in linear systems subject to multiplicative and additive noise. Phys. Rev. E 60, 1494–1499 (1999)

    Article  Google Scholar 

  10. Li, J.H., Han, Y.X.: Phenomenon of stochastic resonance caused by multiplicative asymmetric dichotomous noise. Phys. Rev. E 74, 051115 (2006)

    Article  Google Scholar 

  11. Gitterman, M.: Harmonic oscillator with fluctuating damping parameter. Phys. Rev. E 69, 041101 (2004)

    Article  MathSciNet  Google Scholar 

  12. Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993)

    Article  Google Scholar 

  13. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995)

    Article  Google Scholar 

  14. Gitterman, M.: Classical harmonic oscillator with multiplicative noise. Phys. A 352, 309–334 (2005)

    Article  Google Scholar 

  15. Du, L.C., Mei, D.C.: Stochastic resonance in a bistable system with global delay and two noises. Eur. Phys. J. B 85(75), 1–5 (2012)

    Google Scholar 

  16. Du, L.C., Mei, D.C.: Stochastic resonance, reverse-resonance and stochastic multi-resonance in an underdamped quartic double-well potential with noise and delay. Phys. A 390, 3262–3266 (2011)

    Article  Google Scholar 

  17. Gammaitoni, L., Marchesoni, F., Santucci, S.: Stochastic resonance as a bona fide resonance. Phys. Rev. Lett. 74, 1052–1055 (1995)

    Article  Google Scholar 

  18. Chen, W., Sun, H.G., Li, X.C.: Modeling the Fractional Derivative Mechanics and Engineering Problems. Science Press, Beijing (2010)

    Google Scholar 

  19. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  20. Bagley, R.L., Torvik, P.J.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, 294–298 (1984)

    Article  MATH  Google Scholar 

  21. Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23, 918–925 (1985)

    Article  MATH  Google Scholar 

  22. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)

    Article  MATH  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  24. Tofighi, A.: The intrinsic damping of the fractional oscillator. Phys. A 329, 29–34 (2003)

    Article  Google Scholar 

  25. Ryabov, Y.E., Puzenko, A.: Damped oscillations in view of the fractional oscillator equation. Phys. Rev. B 66, 184201 (2002)

    Article  Google Scholar 

  26. Narahari Achar, B.N., Hanneken, J.W., Clarke, T.: Response characteristics of a fractional oscillator. Phys. A 309, 275–288 (2002)

    Article  MATH  Google Scholar 

  27. Picozzi, S., West, B.J.: Fractional Langevin model of memory in financial markets. Phys. Rev. E 66, 046118 (2002)

    Article  MathSciNet  Google Scholar 

  28. Fa, K.S.: Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E 73, 061104 (2006)

    Article  Google Scholar 

  29. Zhang, L., Xie, T.T., Luo, M.K.: Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals. Acta. Phys. Sin. 63, 010506 (2014)

    Google Scholar 

  30. Soika, E., Mankin, R.: Response of a fractional oscillator to multiplicative trichotomous noise. WSEAS Trans. Biol. Biomed. 7, 21–30 (2010)

    Google Scholar 

  31. Soika, E., Mankin, R.: Trichotomous-noise-induced stochastic resonance for a fractional oscillator. Adv. Biomed. Res. 1790–5125, 440–445 (2010)

    Google Scholar 

  32. Soika, E., Mankin, R., Ainsaar, A.: Resonant behavior of a fractional oscillator with fluctuating frequency. Phys. Rev. E 81, 011141 (2010)

    Article  Google Scholar 

  33. Zhong, S.C., Wei, K., Gao, S.L., Ma, H.: Stochastic resonance in a linear fractional Langevin equation. J. Stat. Phys. 150, 867–880 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, T., Luo, M.K., Hua, Y.: The resonant behavior of fractional harmonic oscillator with fluctuating mass. Acta Phys. Sin. 62, 210503 (2013)

    Google Scholar 

  35. Shapiro, V.E., Loginov, V.M.: “Formulae of differentiation” and their use for solving stochastic equations. Phys. A 91, 563–574 (1978)

    Article  MathSciNet  Google Scholar 

  36. Bena, I., Broeck, C.V.D., Kawai, R., Lindenberg, K.: Nonlinear response with dichotomous noise. Phys. Rev. E 66, 045603 (2002)

    Article  Google Scholar 

  37. Laio, F., Ridolfi, L., Odorico, P.D.: Noise induced transitions in state-dependent dichotomous processes. Phys. Rev. E 78, 031137 (2008)

    Article  Google Scholar 

  38. Laas, K., Mankin, R., Reiter, E.: Influence of memory time on the resonant behavior of an oscillatory system described by a generalized Langevin equation. Int. J. Math. Models Methods Appl. Sci. 5, 280–289 (2011)

    Google Scholar 

  39. Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals and Systems. Prentice Hall, China (2005)

    Google Scholar 

  40. Jing, H.L.: Stochastic giant resonance. Phys. Rev. E 76, 021113 (2007)

    Article  Google Scholar 

  41. Wang, Y.Q., Si, H.Z., Su, Y.M., Xu, P.L.: Under sampling stochastic resonance for detecting weak signal. Adv. Mater. Res. 850, 944–948 (2014)

    Google Scholar 

  42. Lopes, M.A., Lee, K.E., Goltsev, A.V., Mendes, J.F.F.: Noise-enhanced nonlinear response and the role of modular structure for signal detection in neuronal networks. Phys. Rev. E 90, 052709 (2014)

    Article  Google Scholar 

  43. Lu, S.L., He, Q.B., Kong, F.R.: Effects of underdamped step-varying second-order stochastic resonance for weak signal detection. Digit. Signal Process. 36, 93–103 (2015)

    Article  MathSciNet  Google Scholar 

  44. Deng, W.H., Barkai, E.: Ergodic properties of fractional Brownian–Langevin motion. Phys. Rev. E 79, 011112 (2009)

    Article  MathSciNet  Google Scholar 

  45. Deng, W.H.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2, 501–535 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kou, S.C., Xie, X.S.: Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180603 (2004)

    Article  Google Scholar 

  48. Min, W., English, B.P., Luo, G., Cherayil, B.J., Kou, S.C., Xie, X.S.: Fluctuating enzymes: lessons from single-molecule studies. Acc. Chem. Res. 38, 923–931 (2005)

    Article  Google Scholar 

  49. Min, W., Luo, G., Cherayil, B.J., Kou, S.C., Xie, X.S.: Observation of power-law memory kernel for fluctuations within a single protein molecule. Phys. Rev. Lett. 94, 198302 (2005)

    Article  Google Scholar 

  50. Hanggi, P.: Stochastic resonance in biology: how noise can enhance detection of weak signals and help improve biological information processing. Eur. J. Chemphyschem 3, 285–290 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Program of National Natural Science Foundation of China (Grant Number 11171238), Natural Science Foundation for the Youth (Grant Number 11401405) and the Young Teacher Fund of Sichuan University, China (Grant Number 2082604174031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchuan Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Ma, H., Peng, H. et al. Stochastic resonance in a harmonic oscillator with fractional-order external and intrinsic dampings. Nonlinear Dyn 82, 535–545 (2015). https://doi.org/10.1007/s11071-015-2174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2174-2

Keywords

Navigation