Skip to main content
Log in

A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel sliding mode control (SMC) strategy based on approximate feedback linearization and enhanced nonlinear disturbance observer for small-scale unmanned helicopters with high-order time-varying matched and mismatched disturbance. The novel SMC method is developed by designing a new sliding surface with the estimation of mismatched disturbance and its derivative. The proposed novel SMC method possesses following two appealing traits. First, it is robust with both matched disturbance and mismatched disturbance. Second, the chattering problem can be attenuated significantly. Moreover, the uniformly ultimately bounded stability of the closed-loop helicopter system is proved by theoretical analysis. Finally, the excellent tracking performance and robustness of the proposed flight control scheme are demonstrated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Godbolt, B., Vitzilaios, N.I., Lynch, A.F.: Experimental validation of a helicopter autopilot design using model-based PID control. J. Intell. Robot Syst. 70(1–4), 385–399 (2013)

    Article  Google Scholar 

  2. Gadewadikar, J., Lewis, F.L., Subbarao, K., Peng, K., Chen, B.: H-infinity static output-feedback control for rotorcraft. J. Intell. Robot Syst. 54(4), 629–646 (2009)

    Article  Google Scholar 

  3. Tang, J., Wen, C., Meng, W.-Y.: Robustness analysis of unmanned helicopter flight control law using \(\mu \)-analysis techniques. In: Proceedings of the 6th IEEE Conference Industrial Electronics and Applications, pp. 1283–1287 (2011)

  4. Léonard, F., Martini, A., Abba, G.: Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts. IEEE Trans. Control Syst. Technol. 20(1), 154–163 (2012)

    Article  Google Scholar 

  5. Liu, H., Yu, Y., Zhong, Y.: Robust trajectory tracking control for a laboratory helicopter. Nonlinear Dyn. 77(3), 621–634 (2014)

    Article  MATH  Google Scholar 

  6. Raptis, I.A., Valavanis, K.P., Moreno, W.A.: A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Trans. Control Syst. Technol. 19(2), 465–473 (2011)

    Article  Google Scholar 

  7. Zhu, B., Huo, W.: Robust nonlinear control for a model-scaled helicopter with parameter uncertainties. Nonlinear Dyn. 73(1–2), 1139–1154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ifassiouen, H., Guisser, M., Medromi, H.: Robust nonlinear control of a miniature autonomous helicopter using sliding mode control structure. In: Proceedings of World Academic Science and Engineering and Technology, pp. 101–106 (2007)

  9. Benallegue, A., Mokhtari, A., Fridman, L.: High-order sliding-mode observer for a quadrotor UAV. Int. J. Robust Nonlinear 18(4–5), 427–440 (2008)

  10. Guo, J.-C., Xian, B.: Robust adaptive control design for rotorcraft unmanned aerial vehicles based on sliding mode approach. Trans. Tianjin Univ. 20, 393–401 (2014)

    Article  Google Scholar 

  11. Zheng, E.-H., Xiong, J.-J.: Quad-rotor unmanned helicopter control via novel robust terminal sliding mode controller and under-actuated system sliding mode controller. Optik 125(12), 2817–2825 (2014)

    Article  Google Scholar 

  12. Mu, C.-X., Yu, X.-H., Sun, C.-Y.: Phase trajectory and transient analysis for nonsingular terminal sliding mode control systems. Acta Automatica Sinica 39(6), 902–908 (2013)

    Article  MathSciNet  Google Scholar 

  13. Tian, B.-L., Fan, W.-R., Zong, Q.: Integrated guidance and control for reusable launch vehicle in reentry phase. Nonlinear Dyn. 80(1–2), 397–412 (2015)

    Article  MATH  Google Scholar 

  14. Mu, C.-X., Sun, C.-Y.: A new finite time convergence condition for super-twisting observer based on Lyapunov analysis. Asian J. Control 17(3), 1050–1060 (2015)

    Article  MathSciNet  Google Scholar 

  15. Chen, M., Chen, W.-H.: Sliding mode control for a class of uncertain nonlinear system based on disturbance observer. Int. J. Adapt Control 24(1), 51–64 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Besnard, L., Shtessel, Y.B., Landrum, B.: Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J. Franklin Inst. 349(2), 658–684 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mu, C.-X., Zong, Q., Tian, B., Xu, W.: Continuous sliding mode controller with disturbance observer for hypersonic vehicles. IEEE/CAA J. Autom. Sin. 2(1), 45–55 (2015)

    MathSciNet  Google Scholar 

  18. Yang, J., Li, S.-H., Yu, X.-H.: Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 60(1), 160–169 (2013)

    Article  Google Scholar 

  19. Yang, J., Su, J.-Y., Li, S.-H., Yu, X.-H.: High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans. Ind. Electron. 60(1), 160–169 (2013)

    Article  Google Scholar 

  20. Ginoya, D., Shendge, P.D., Phadke, S.B.: Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Ind. Inform. 10(1), 604–614 (2014)

    Article  Google Scholar 

  21. Liu, C.-J., Chen, W.-H., Andrews, J.: Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers. Control Eng. Pract. 20(3), 258–268 (2012)

    Article  Google Scholar 

  22. Martini, A., Léonard, F., Abba, G.: Dynamic modelling and stability analysis of model-scale helicopters under wind gust. J. Intell. Robot Syst. 54(4), 647–686 (2009)

    Article  Google Scholar 

  23. Slotine, J.J.E., Li, W.-P.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  24. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River, New Jersey (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China under Grants 61403274 and 51337007, and the Application Base and Frontier Technology Research Project of Tianjin of China under Grants 13JCQNJC03600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Wu, A., Shang, Y. et al. A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbance. Nonlinear Dyn 83, 1053–1068 (2016). https://doi.org/10.1007/s11071-015-2387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2387-4

Keywords

Navigation