Skip to main content
Log in

Local bifurcation analysis and topological horseshoe of a 4D hyper-chaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a 4D autonomous system with complex hyper-chaotic dynamics is introduced. The Lyapunov exponent spectrum, bifurcation diagram and phase portrait are provided. Basic dynamical properties are also analyzed. In order to clarify the evolution of the complex dynamic behaviors of the system, the local bifurcation is studied and a Hopf bifurcation is proved to occur when the appropriate bifurcation parameter passes the critical value. All the conditions of Hopf bifurcation are derived by applying center manifold theorem and Poincaré–Andronov–Hopf bifurcation theorem. Numerical simulation results are consistent with the theoretical analysis. Besides, we present a rigorous study on the hyper-chaotic system by combining the topological horseshoe theory with a computer-assisted approach of Poincaré maps. Utilizing the algorithm for finding horseshoes in 3D hyper-chaotic maps, a horseshoe with two-directional expansion in the 4D hyper-chaotic system has been found, which rigorously proves the existence of hyper-chaos in theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lu, J., Chen, G.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos 16(4), 775–858 (2006)

    Article  Google Scholar 

  3. Yang, X., Li, Q., Chen, G.: A twin-star hyperchaotic attractor and its circuit implementation. Int. J. Circuit Theory Appl. 31(6), 637–640 (2003)

    Article  Google Scholar 

  4. Li, Q., Yang, X.-S., Chen, S.: Hyperchaos in a spacecraft power system. Int. J. Bifurc. Chaos 21(6), 1719–1726 (2011)

    Article  MATH  Google Scholar 

  5. Fitch, A.L., Yu, D.S., Iu, H.H.C., Sreeram, V.: Hyperchaos in a memristor-based modified canonical Chuas circuit. Int. J. Bifurc Chaos 22(6), 1250133 (2012)

    Article  Google Scholar 

  6. Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Phys. A Statist. Mech. Appl. 364, 103–110 (2006)

    Article  Google Scholar 

  7. Li, Y.-X., Liu, X.-Z., Chen, G.-R., Liao, X.-X.: A new hyperchaotic Lorenz-type system: generation, analysis, and implementation. Int. J. Circuit Theory Appl. 39(8), 865–879 (2011)

    Google Scholar 

  8. Chen, C.-H., Sheu, L.-J., Chen, H.-K., Chen, J.-H., Wang, H.-C., Chao, Y.-C., Lin, Y.-K.: A new hyper-chaotic system and its synchronization. Nonlinear Anal. Real World Appl. 10(4), 2088–2096 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, Q., Yang, X.-S.: Hyperchaos from two coupled Wien-bridge oscillators. Int. J. Circuit Theory Appl. 36(1), 19–29 (2008)

    Article  MATH  Google Scholar 

  10. Cafagna, D., Grassi, G.: New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring. Int. J. Bifurc. Chaos 13, 2889–2903 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y.X., Chen, G.R., Tang, W.K.S.: Controlling a unified chaotic system to hyperchaotic. IEEE Trans. Circuits Syst. II 52, 204–207 (2005)

    Article  Google Scholar 

  12. Chen, Z.-Q., Yang, Y., Qi, G.-Y., Yuan, Z.-Z.: A novel hyperchaos system only with one equilibrium. Phys. Lett. A 360, 696–701 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gao, T.-G., Chen, G.-R., Chen, Z.-Q., Cang, S.-J.: The generation and circuit implementation of a new hyperchaos based upon Lorenz system. Phys. Lett. A 361, 78–86 (2007)

    Article  MATH  Google Scholar 

  14. Qi, G.-Y., Van Wyk, M.A., Van Wyk, B.J., Chen, G.-R.: On a new hyperchaotic system. Phys. Lett. A 372, 124–136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qi, G.-Y., Van Wyk, M.A., Van Wyk, B.J., Chen, G.-R.: A new hyperchaotic system and its implementation. Chaos Solitons Fractals 40, 2544–2549 (2009)

    Article  Google Scholar 

  16. Wu, W.-J., Chen, Z.-Q., Yuan, Z.-Z.: The evolution of a novel four-dimensional autonomous system: among 3-torus, limit cycle, 2-torus, chaos and hyperchaos. Chaos Solitons Fractals 39, 2340–2356 (2009)

    Article  MathSciNet  Google Scholar 

  17. Wang, J.-Z., Chen, Z.-Q., Yuan, Z.-Z.: The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system. Chin. Phys. 15, 1216–1225 (2006)

    Article  Google Scholar 

  18. Sparrow, C.: The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors. Springer, New York (1982)

    Book  Google Scholar 

  19. Ueta, T., Chen, G.-R.: Bifurcation analysis of Chens equation. Int. J. Bifurc. Chaos 10, 1917–1931 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Gao, Q., Ma, J.-H.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58, 209–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, J.-Z., Zhang, Q., Chen, Z.-Q.: Local bifurcation analysis and utimate bound of a novel 4D hyper-chaotic system. Nonlinear Dyn. 78, 2517–2531 (2014)

    Article  MathSciNet  Google Scholar 

  22. Wu, W.-J., Chen, Z.-Q.: Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system. Nonlinear Dyn. 60, 615–630 (2010)

    Article  MATH  Google Scholar 

  23. Ma, J., Ying, H.-P., Pu, ZhSh: An anti-control scheme for spiral under Lorenz chaotic signals. Chin. Phys. Lett. 22, 1065–1068 (2005)

    Article  Google Scholar 

  24. Ma, J., Li, F., Huang, L., Jin, W.Y.: Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Commun. Non. Sci. Numer. Simul. 16, 3770–3785 (2011)

    Article  MATH  Google Scholar 

  25. Wang, C.N., Ma, J., Liu, Y., Huang, L.: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67, 139–146 (2012)

    Article  MATH  Google Scholar 

  26. Szymczak, A.: The Conley index and symbolic dynamics. Topology 35, 287–299 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Plumecoq, J., Lefranc, M.: From template analysis to generating partitions I: periodic orbits, knots and symbolic encodings. Phys. D Nonlinear Phenom. 144, 231–258 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zgliczyński, P.: Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto–Sivashinsky PDE-A computer-assisted proof. Found. Comput. Math. 4, 157–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Q., Yang, X.-S.: A computer-assisted verification of hyperchaos in the Saito hysteresis chaos generator. J. Phys. Math. Gen. 39, 9139 (2006)

    Article  MATH  Google Scholar 

  30. Yang, F., Li, Q., Zhou, P.: Horseshoe in the hyperchaotic MCK circuit. Int. J. Bifurc. Chaos 17, 4205–4211 (2007)

    Article  MATH  Google Scholar 

  31. Li, Q., Yang, X.-S.: A 3D smale horseshoe in a hyperchaotic discrete-time system. Discret. Dyn. Nat. Soc. 2007, 16239 (2007)

    Article  Google Scholar 

  32. Li, Q.: A topological horseshoe in the hyperchaotic Rössler attractor. Phys. Lett. A 372(17), 2989–2994 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Q., Tang, S.: Algorithm for finding horseshoes in three-dimensional hyperchaotic maps and its application. Acta Phys. Sin. 62(2), 020510 (2013)

    Google Scholar 

  34. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  35. Wiggins, Stephen: Introduction to Applied Nonlinear Dynanmical System and Chaos, vol. 2. Springer, New York (2003)

    Google Scholar 

  36. Wu, W.-J., Chen, Z.-Q., Yuan, Z.-Z.: Local bifurcation analysis of a four-dimensional hyperchaotic system. Chin. Phys. B 17(07), 2420–2432 (2008)

    Article  Google Scholar 

  37. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, pp. 200–253. Springer, New York (1990)

    Book  MATH  Google Scholar 

  38. Yang, X.S.: Topological horseshoes and computer assisted verification of chaotic dynamics. Int. J. Circuit Theory Appl. 19(04), 1127–1145 (2009)

    MATH  Google Scholar 

  39. Yang, X.-S., Li, H., Huang, Y.: A planar topological horseshoe theory with applications to computer verifications of chaos. J. Phys. A Math. Gen. 38, 4175 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press Inc., New York (1998)

    Google Scholar 

  41. Li, Q., Yang, X.-S.: A simple method for finding topological horseshoes. Int. J. Bifurc. Chaos 20(2), 467–478 (2010)

  42. Fa, Q.-J.: Horseshoe chaos in a hybrid planar dynamical system. Int. J. Bifurc. Chaos 22(8), 1250202 (2012)

    Article  MathSciNet  Google Scholar 

  43. Li, Q., Yang, X.-S.: New walking dynamics in the simplest passive bipedal walking model. Appl. Math. Modell. 36(11), 5262–5271 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Natural Science Foundation of China Grants No.61174094 , No.61573199 and No.61533011. Tianjin Nature Science Foundation Grant No. 14JCYBJC18700, and Shandong Provincial Natural Science Foundation Grant No.ZR2014FQ019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhou, L., Chen, Z. et al. Local bifurcation analysis and topological horseshoe of a 4D hyper-chaotic system. Nonlinear Dyn 83, 2055–2066 (2016). https://doi.org/10.1007/s11071-015-2464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2464-8

Keywords

Navigation