Skip to main content

Advertisement

Log in

Trajectory tracking sliding mode control of underactuated AUVs

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the control of underactuated autonomous underwater vehicles (AUVs). AUVs are needed in many applications such as the exploration of oceans, scientific and military missions, etc. There are many challenges in the control of AUVs due to the complexity of the AUV model, the unmodelled dynamics, the uncertainties and the environmental disturbances. A trajectory tracking control scheme is proposed in this paper; this control scheme is designed using the sliding mode control technique in order to be robust against bounded disturbances. The control performance of an example AUV, using the proposed method, is evaluated through computer simulations. These simulation studies, which consider different reference trajectories, show that the proposed control scheme is robust under bounded disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Cristi, R., Papoulias, F.A., Healey, A.J.: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE J. Ocean. Eng. 15(3), 152–160 (1990)

    Article  Google Scholar 

  2. Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)

    Article  Google Scholar 

  3. Wichlund, K., Srdalen, O.J., Egeland, O.: Control properties of underactuated vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 2009-2014. IEEE (1995)

  4. Aguiar, A.P., Hespanha, J.P.: Position tracking of underactuated vehicles. In: Proceedings of the 2003 American Control Conference, vol. 3, pp. 1988-1993. IEEE (2003)

  5. Wang, L., Jia, H.m., Zhang, L.j., Wang, H.b.: Horizontal tracking control for AUV based on nonlinear sliding mode. In: International Conference on Information and Automation (ICIA), pp. 460-463. IEEE (2012)

  6. Ashrafiuon, H., Muske, K.R., McNinch, L.C., Soltan, R.A.: Sliding-mode tracking control of surface vessels. IEEE Trans. Ind. Electron. 55(11), 4004–4012 (2008)

    Article  Google Scholar 

  7. Yoerger, D.R., Slotine, J.J.: Robust trajectory control of underwater vehicles. IEEE J. Ocean. Eng. 10(4), 462–470 (1985)

    Article  Google Scholar 

  8. Joe, H., Kim, M., Yu, S.C.: Second-order sliding mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn. 78(1), 183–196 (2014)

    Article  Google Scholar 

  9. Sahu, B.K., Subudhi, B.: Adaptive tracking control of an autonomous underwater vehicle. Int. J. Autom. Comput. 11(3), 299–307 (2014)

    Article  Google Scholar 

  10. McGann, C., Py, F., Rajan, K., Ryan, J.P., Henthorn, R.: Adaptive control for autonomous underwater vehicles. In: Proceedings of the 23rd national conference on Artificial intelligence-Volume 3, pp. 1319-1324 (2008)

  11. Antonelli, G., Caccavale, F., Chiaverini, S., Fusco, G.: A novel adaptive control law for underwater vehicles. IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)

    Article  Google Scholar 

  12. Do, K., Pan, J., Jiang, Z.: Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Eng. 31(16), 1967–1997 (2004)

    Article  Google Scholar 

  13. Li, J.H., Lee, P.M.: Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle. Ocean Eng. 32(17), 2165–2181 (2005)

  14. Yuh, J.: Learning control for underwater robotic vehicles. IEEE Control Syst. Mag. 14(2), 39–46 (1994)

    Article  Google Scholar 

  15. Peng, Z., Wang, D., Wang, H., Wang, W.: Distributed coordinated tracking of multiple autonomous underwater vehicles. Nonlinear Dyn. 78(2), 1261–1276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, H., Wang, D., Peng, Z.: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation. Nonlinear Dyn. 77(1–2), 107–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yuh, J.: A neural net controller for underwater robotic vehicles. IEEE J. Ocean. Eng. 15(3), 161–166 (1990)

    Article  Google Scholar 

  18. Fujii, T., Ura, T.: Development of motion control system for AUV using neural nets. In: Proceedings of the (1990) Symposium on Autonomous Underwater Vehicle Technology, pp. 81-86. IEEE (1990)

  19. Khaled, N., Chalhoub, N.G.: A self-tuning guidance and control system for marine surface vessels. Nonlinear Dyn. 73(1–2), 897–906 (2013)

    Article  Google Scholar 

  20. Wang, J.S., Lee, C.G.: Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle. IEEE Trans. Robot. Autom. 19(2), 283–295 (2003)

    Article  Google Scholar 

  21. Lefeber, E., Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated ship. IEEE Trans. Control Syst. Technol. 11(1), 52–61 (2003)

    Article  Google Scholar 

  22. Pettersen, K.Y., Nijmeijer, H.: Underactuated ship tracking control: theory and experiments. Int. J. Control 74(14), 1435–1446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002)

    Article  MATH  Google Scholar 

  24. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, New York (2011)

    Book  Google Scholar 

  25. Fossen, T.I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim (2002)

    Google Scholar 

  26. Yu, R., Zhu, Q., Xia, G., Liu, Z.: Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012)

    Article  MathSciNet  Google Scholar 

  27. Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli Filho, M., Bastos-Filho, T.F.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Eng. Pract. 16(11), 1354–1363 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to recognize the financial support of the Kuwait Foundation for the Advancement of Science (KFAS) for the project KFAS 2013-5505-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Zribi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmokadem, T., Zribi, M. & Youcef-Toumi, K. Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn 84, 1079–1091 (2016). https://doi.org/10.1007/s11071-015-2551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2551-x

Keywords

Navigation