Skip to main content
Log in

Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A parallel computation methodology is proposed to study the dynamic fracture process of a flexible multibody system with initial cracks. The potential fracture domains of the flexible body system are described by using the particles of smoothed particle hydrodynamics (SPH), and the other domains of the system are modeled by using the finite elements of absolute nodal coordinate formulation (ANCF). In order to preserve the continuity of deformation field, extra virtual particles are uniformly embedded into the interface, where the finite elements of ANCF and the particles of SPH are connected, so as to transmit the interaction forces. The OpenACC derivatives are used to parallelize both the particle contact detection and the solution of the integral equations. A predictor-corrector scheme is used to solve the ordinary differential equations for the particles of SPH, while the generalized-alpha method is used to solve the huge set of differential algebraic equations for the multibody system. The OpenMP derivatives are also used to parallelize the evaluation of the elastic force vectors and their Jacobi matrices of the finite elements. Finally, three case studies are given to validate the proposed computation methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Belytschko, T., Chen, H., Xu, J., Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 58, 1873–1905 (2003)

    Article  MATH  Google Scholar 

  2. Taylor, D., Cornetti, P., Pugno, N.: The fracture mechanics of finite crack extension. Eng. Fract. Mech. 72, 1021–1038 (2005)

    Article  Google Scholar 

  3. Mergheim, J., Kuhl, E., Steinmann, P.: A finite element method for the computational modelling of cohesive cracks. Int. J. Numer. Methods Eng. 63, 276–289 (2005)

    Article  MATH  Google Scholar 

  4. Armero, F., Linder, C.: Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int. J. Fract. 160, 119–141 (2009)

    Article  MATH  Google Scholar 

  5. Li, M., Werner, E., You, J.: Fracture mechanical analysis of tungsten armor failure of a water-cooled divertor target. Fusion Eng. Des. 89, 2716–2725 (2014)

    Article  Google Scholar 

  6. Song, J., Wang, H., Belytschko, T.: A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)

    Article  MATH  Google Scholar 

  7. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  8. Shabana, A.A.: Computational Dynamics, 3rd edn. Wiley, New York (2010)

    Book  MATH  Google Scholar 

  9. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  10. Wells, A.A.: Application of fracture mechanics at and beyond general yield. Br. Weld. J. 10, 563–570 (1963)

    Google Scholar 

  11. Sukumar, N., Belytschko, T.: Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Methods Eng. 48, 1741–1760 (2000)

    Article  MATH  Google Scholar 

  12. Portela, A., Aliabadi, M.H., Rooke, D.P.: The dual boundary element method: effective implementation for crack problems. Int. J. Numer. Methods Eng. 33, 1269–1287 (1992)

    Article  MATH  Google Scholar 

  13. Pan, E.: A general boundary element analysis of 2-D linear elastic fracture mechanics. Int. J. Fract. 88, 41–59 (1997)

    Article  Google Scholar 

  14. Areias, P.M.A., Belytschko, T.: Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int. J. Numer. Methods. Eng. 63, 760–788 (2005)

    Article  MATH  Google Scholar 

  15. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1020 (1977)

    Article  Google Scholar 

  16. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  17. Benz, W., Asphaug, E.: Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253–265 (1995)

    Article  MATH  Google Scholar 

  18. Xu, F., Zhao, Y., Li, Y., Kikuchi, M.: Study of numerical and physical fracture with SPH method. Acta Mech. Solida Sin. 23, 49–56 (2010)

    Article  Google Scholar 

  19. Maurel, B., Combescure, A.: An sph shell formulation for plasticity and fracture analysis in explicit dynamics. Int. J. Numer. Methods Eng. 76, 949–971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  21. Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method, p. 692. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  22. Das, R., Cleary, P.: Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics. Theor. Appl. Fract. Mech. 53, 47–60 (2010)

    Article  Google Scholar 

  23. Chakraborty, S., Shaw, A.: A pseudo-spring based fracture model for SPH simulation of impact dynamics. Int. J. Impact Eng. 58, 84–95 (2013)

    Article  Google Scholar 

  24. Liu, W.K., Chen, Y.: Wavelet and multiple scale reproducing kernel methods. Int. J. Numer. Methods Fluids 21, 901–931 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, J.K., Beraun, J.E., Carney, T.C.: A corrective smoothed particle method for boundary value problems in heat conduction. Comput. Methods Appl. Mech. Eng. 46, 231–252 (1999)

    MATH  Google Scholar 

  26. Chen, J.K., Beraun, J.E., Jih, C.J.: Completeness of corrective smoothed particle method for linear elastodynamics. Comput. Mech. 24, 273–285 (1999)

    Article  MATH  Google Scholar 

  27. Monaghan, J.J.: SPH without a tensile instability. J. Comput. Phys. 159, 290–311 (2000)

    Article  MATH  Google Scholar 

  28. Gray, J.P., Monaghan, J.J., Swift, R.P.: SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190, 6641–6662 (2001)

    Article  MATH  Google Scholar 

  29. Hu, W., Tian, Q., Hu, H.Y.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75, 653–671 (2014)

    Article  MathSciNet  Google Scholar 

  30. Pazouki, A., Serban, R., Negrut, D.: A high performance computing approach to the simulation of fluid-solid interaction problems with rigid and flexible components. Arch. Mech. Eng. 61, 227–251 (2014)

  31. Rojek, J., Oñate, E., Labra, C., Kargl, H.: Discrete element simulation of rock cutting. Int. J. Rock Mech. Min. 48, 996–1010 (2011)

    Article  Google Scholar 

  32. Johnson, G.R.: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nucl. Eng. Des. 150, 265–74 (1994)

    Article  Google Scholar 

  33. Johnson, G.R., Stryk, R.A., Beissel, S.R.: SPH for high velocity impact computations. Comput. Methods Appl. Mech. Eng. 139, 347–373 (1996)

    Article  MATH  Google Scholar 

  34. Fernández-Méndez, S., Bonet, J., Huerta, A.: Continuous blending of SPH with finite elements. Comput. Struct. 83, 1448–1458 (2005)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Z., Qiang, H., Gao, W.: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Eng. Struct. 33, 255–264 (2011)

    Article  Google Scholar 

  36. Chuzel-Marmot, Y., Ortiz, R., Combescure, A.: Three dimensional SPH–FEM gluing for simulation of fast impacts on concrete slabs. Comput. Struct. 89, 2484–2494 (2011)

    Article  MATH  Google Scholar 

  37. Rabczuk, T., Xiao, S.P., Sauer, M.: Coupling of meshfree methods with finite elements: basic concept and test results. Commun. Numer. Methods Eng. 22, 1031–65 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vuyst, T.D., Vignjevic, R., Campbell, J.C.: Coupling between meshless and finite element methods. Int. J. Impact Eng. 31, 1054–1064 (2005)

    Article  Google Scholar 

  39. Shabana, A.A.: An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies. Technical report no. MBS96-1-UIC, University of Illinois at Chicago (1996)

  40. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)

    Article  MATH  Google Scholar 

  41. Liu, C., Tian, Q., Hu, H.Y.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tian, Q., Zhang, Y., Chen, L., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4, 021009 (2009)

    Article  Google Scholar 

  43. Olshevskiy, A., Dmitrochenko, O., Dai, M.D., Kim, C.W.: The simplest 3-, 6- and 8-noded fully-parameterized ANCF plate elements using only transverse slopes. Multibody Syst. Dyn. 34, 1–29 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Yoo, W.S., Dmitrochenko, O., Yu, D.: Review of finite elements using absolute nodal coordinates for large-deformation problems and matching physical experiments. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA (2005), DETC2005-84720

  45. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 369–384 (2013)

    Google Scholar 

  47. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Libersky, L.D., Petschek, A.G.: Smooth particle hydrodynamics with strength of materials. Lect. Notes Phys. 395, 248–257 (1991)

    Article  Google Scholar 

  49. Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  MathSciNet  Google Scholar 

  50. Monaghan, J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82, 1–15 (1989)

    Article  MATH  Google Scholar 

  51. Swegle, J.W., Hicks, D.L., Attaway, S.W.: Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116, 123–134 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  52. Balsara, D.S.: Von neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms. J. Comput. Phys. 121, 357–372 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)

    Article  MATH  Google Scholar 

  54. Dilts, G.A.: Moving-least-squares-particle hydrodynamics-I. Consistency and stability. Int. J. Numer. Methods Eng. 44, 1115–1155 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  55. Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139, 375–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Gutfraind, R., Savage, S.B.: Smoothed particle hydrodynamics for the simulation of broken-ice fields: Mohr–Coulombtype rheology and frictional boundary conditions. J. Comput. Phys. 134, 203–215 (1997)

    Article  MATH  Google Scholar 

  57. Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil–structure interaction. Int. J. Numer. Anal. Meth. Geomech. 38, 747–770 (2014)

    Article  Google Scholar 

  58. Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Design. 123, 606–613 (2001)

    Article  Google Scholar 

  59. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Design. 123, 614–621 (2001)

    Article  Google Scholar 

  60. Liu, C., Tian, Q., Hu, H.Y., García-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems. Nonlinear Dyn. 69, 127–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and cylindrical shell elements of gradient deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  62. Hussein, B., Negrut, D., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54, 283–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. Shabana, A.A., Hussein, B.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: application to multibody systems. J. Sound Vib. 327, 557–563 (2009)

    Article  Google Scholar 

  64. Hussein, B., Shabana, A.A.: Sparse matrix implicit numerical integration of the stiff differential/algebraic equation: implementation. Nonlinear Dyn. 65, 369–382 (2011)

    Article  MathSciNet  Google Scholar 

  65. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  66. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. Tian, Q., Sun, Y.L., Liu, C., Hu, H.Y., Paulo, F.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114, 106–120 (2013)

    Article  Google Scholar 

  68. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  69. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–67 (2011)

    Article  MATH  Google Scholar 

  70. Liu, C., Tian, Q., Hu, H.Y.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)

    Article  Google Scholar 

  71. Tian, Q., Xiao, Q.F., Sun, Y.L., Hu, H.Y., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33, 259–284 (2015)

    Article  MathSciNet  Google Scholar 

  72. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  73. Hermanns, M.: Parallel Programming in Fortran 95 Using OpenMP. http://www.openmp.org/presentations/miguel/F95_OpenMPv1_v2.pdf (2002)

  74. The OpenACC Standard. http://www.openacc-standard.org

  75. Monaghan, J.J., Kos, A.: Solitary waves on a Cretan beach. J. Waterw. Port Coast. Ocean Eng. 125, 145–154 (1999)

    Article  Google Scholar 

  76. Amini, Y., Emdad, H., Farid, M.: A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method. Eur. J. Mech. B Fluids. 30, 184–194 (2011)

    Article  MATH  Google Scholar 

  77. James, M.G., Barry, J.G.: Mechanics of Materials, 7th edn. CL-Engineering, Stamford, CT (2008)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundations of China under Grants 11290151, 11221202 and 11472042. The work was also supported in part by Excellent Young Scholar Research Fund from Beijing Institute of Technology and supported in part by the Beijing Higher Education Young Elite Teacher Project under Grant YETP1201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Tian, Q. & Hu, H. Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH. Nonlinear Dyn 84, 2447–2465 (2016). https://doi.org/10.1007/s11071-016-2657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2657-9

Keywords

Navigation