Skip to main content
Log in

Nonlinear vibration of rotating pre-deformed blade with thermal gradient

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear dynamic behavior is investigated for a rotating pre-deformed pre-twisted blade subjected to harmonic gas pressure. The pre-deformation curve produced by thermal gradient is derived. A novel nonlinear vibration system is established by considering the influence of pre-deformation. The combination of the Lagrange principle and the assumed modes method is utilized to obtain the motion equations, and then the equations are transformed into a dimensionless form through introducing a set of dimensionless parameters. For the purpose of ensuring high precision in determination of the internal resonance condition, the equations of motion are discretized by adequate trial functions. An eigenvalue analysis is conducted on the corresponding linear system to obtain the natural frequencies and examine the possibility of the 2:1 internal resonance. The method of multiple scales is developed to solve the resulting multi-degree-of-freedom nonlinear ordinary differential equations. A numerical integration by means of Runge–Kutta is performed to establish the validity of the derived formulations. The evolution of frequency response curves with the rotating speed is observed. The influences of the thermal gradient, gas pressure and damping coefficient on the resonant dynamics of the system are investigated in detail. For the purpose of comparison, another distribution profile of pre-deformation, which is frequently used in previous literature, is also examined. It could be found that not only the amplitude but also the distribution of the initial deflection could influence the steady-state nonlinear response of the pre-deformed blade. A series of interesting nonlinear dynamic phenomena are discovered from the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rao, J.S.: Turbomachine Blade Vibration. New Age International, New Delhi (1991)

    Google Scholar 

  2. Yoo, H.H., Kwak, J.Y., Chung, J.: Vibration analysis of rotating pre-twisted blades with a concentrated mass. J. Sound Vib. 240(5), 891–908 (2001)

    Article  Google Scholar 

  3. Ramesh, M.N.V., Rao, N.M.: Free vibration analysis of pre-twisted rotating fgm beams. Int. J. Mech. Mater. Des. 9(4), 367–383 (2013)

    Article  Google Scholar 

  4. Piovan, M.T., Sampaio, R.: A study on the dynamics of rotating beams with functionally graded properties. J. Sound Vib. 327(1–2), 134–143 (2009)

    Article  Google Scholar 

  5. Banerjee, J.R.: Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J. Sound Vib. 233(5), 857–875 (2000)

    Article  MATH  Google Scholar 

  6. Banerjee, J.R.: Frequency equation and mode shape formulae for composite timoshenko beams. Compos. Struct. 51(4), 381–388 (2001)

    Article  Google Scholar 

  7. Banerjee, J.R., Jackson, D.R.: Free vibration of a rotating tapered rayleigh beam: a dynamic stiffness method of solution. Comput. Struct. 124, 11–20 (2013)

    Article  Google Scholar 

  8. Banerjee, J.R., Su, H., Jackson, D.R.: Free vibration of rotating tapered beams using the dynamic stiffness method. J. Sound Vib. 298(4–5), 1034–1054 (2006)

    Article  Google Scholar 

  9. Chu, S.M., Cao, D.Q., Sun, S.P., Pan, J.Z., Wang, L.G.: Impact vibration characteristics of a shrouded blade with asymmetric gaps under wake flow excitations. Nonlinear Dyn. 72(3), 539–554 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chiu, Y.J., Yang, C.H.: The coupled vibration in a rotating multi-disk rotor system with grouped blades. J. Mech. Sci. Technol. 28(5), 1653–1662 (2014)

    Article  Google Scholar 

  11. Zhang, B., Li, Y.M.: Six degrees of freedom coupled dynamic response of rotor with a transverse breathing crack. Nonlinear Dyn. 78(3), 1843–1861 (2014)

    Article  Google Scholar 

  12. Hamdan, M.N., Al-Bedoor, B.O.: Non-linear free vibrations of a rotating flexible arm. J. Sound Vib. 242(5), 839–853 (2001)

    Article  MATH  Google Scholar 

  13. Turhan, O., Bulut, G.: On nonlinear vibrations of a rotating beam. J. Sound Vib. 322(1–2), 314–335 (2009)

    Article  Google Scholar 

  14. Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68(4), 487–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yao, M.H., Zhang, W., Chen, Y.P.: Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mech. 225(12), 3483–3510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)

    MATH  Google Scholar 

  17. Chen, L.Q., Zhang, Y.L.: Multi-scale analysis on nonlinear gyroscopic systems with multi-degree-of-freedoms. J. Sound Vib. 333(19), 4711–4723 (2014)

    Article  Google Scholar 

  18. Zhang, Y.L., Chen, L.Q.: External and internal resonances of the pipe conveying fluid in the supercritical regime. J. Sound Vib. 332(9), 2318–2337 (2013)

    Article  Google Scholar 

  19. Zhang, Y.L., Chen, L.Q.: Internal resonance of pipes conveying fluid in the supercritical regime. Nonlinear Dyn. 67(2), 1505–1514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wedel-Heinen, J.: Vibration of geometrically imperfect beam and shell structures. Int. J. Solids Struct. 27(1), 29–47 (1991)

    Article  Google Scholar 

  21. Takabatake, H.: Effect of dead loads on natural frequencies of beams. J. Struct. Eng. 117(4), 1039–1052 (1991)

    Article  Google Scholar 

  22. Zhou, S.J., Zhu, X.: Analysis of effect of dead loads on natural frequencies of beams using finite-element techniques. J. Struct. Eng. 122(5), 512–516 (1996)

    Article  Google Scholar 

  23. Oz, H.R., Pakdemirli, M.: Two-to-one internal resonances in a shallow curved beam resting on an elastic foundation. Acta Mech. 185(3–4), 245–260 (2006)

    Article  MATH  Google Scholar 

  24. Ghayesh, M.H., Arnabili, M.: Coupled longitudinal-transverse behaviour of a geometrically imperfect microbeam. Composites Part B 60, 371–377 (2014)

    Article  Google Scholar 

  25. Farokhi, H., Ghayesh, M.H.: Thermo-mechanical dynamics of perfect and imperfect timoshenko microbeams. Int. J. Eng. Sci. 91, 12–33 (2015)

    Article  MathSciNet  Google Scholar 

  26. Farokhi, H., Ghayesh, M.H.: Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int. J. Mech. Sci. 90, 133–144 (2015)

    Article  Google Scholar 

  27. Farokhi, F., Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int. J. Eng. Sci. 68, 11–23 (2013)

  28. Ghayesh, M.H., Farokhi, H.: Thermo-mechanical dynamics of three-dimensional axially moving beams. Nonlinear Dyn. 80(3), 1643–1660 (2015)

    Article  MathSciNet  Google Scholar 

  29. Al-Bedoor, B.O., Khulief, Y.A.: General planar dynamics of a sliding flexible link. J. Sound Vib. 206(5), 641–661 (1997)

    Article  Google Scholar 

  30. Al-Qaisia, A.A., Al-Bedoor, B.O.: Evaluation of different methods for the consideration of the effect of rotation on the stiffening of rotating beams. J. Sound Vib. 280(3–5), 531–553 (2005)

    Article  Google Scholar 

  31. Chiu, Y.J., Chen, D.Z.: The coupled vibration in a rotating multi-disk rotor system. Int. J. Mech. Sci. 53(1), 1–10 (2011)

    Article  MathSciNet  Google Scholar 

  32. Yoo, H.H., Park, J.H., Park, J.: Vibration analysis of rotating pre-twisted blades. Comput. Struct. 79(19), 1811–1819 (2001)

    Article  Google Scholar 

  33. Gere, J.M., Goodno, B.J.: Mechanics of Materials, 7th edn. Cengage Learning, Clifton Park (2009)

    Google Scholar 

  34. Chen, L.Q., Zhang, G.C., Ding, H.: Internal resonance in forced vibration of coupled cantilevers subjected to magnetic interaction. J. Sound Vib. 354, 196–218 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (No. 2013CB035704); the National Nature Science Foundation of China (No. 11472206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueming Li.

Appendix

Appendix

The matrices and their components in Eq. (22) are derived as:

$$\begin{aligned} {{\varvec{M}}}= & {} \left[ {{\begin{array}{cc} {\left[ {{\varvec{M}}}^{{{\varvec{22}}}} \right] _{{n_{2} \times n_{2}}} }&{} \quad 0 \\ 0&{}\quad {\left[ {{\varvec{M}}}^{{{\varvec{33}}}} \right] _{{n_{3} \times n_{3}}} } \\ \end{array} }} \right] \end{aligned}$$
(51)
$$\begin{aligned} {{\varvec{C}}}= & {} \left[ {{\begin{array}{cc} {\left[ {{\varvec{C}}}^{{{\varvec{22}}}} \right] _{{n_{2} \times n_{2}}} }&{}\quad 0\\ 0&{}\quad {\left[ {{{\varvec{C}}}}^{{{\varvec{33}}}} \right] _{{n_{3} \times n_{3}}}} \\ \end{array} }} \right] \end{aligned}$$
(52)
$$\begin{aligned} {{\varvec{K}}}= & {} \left[ {{\begin{array}{cc} {\left[ {{{\varvec{K}}}^{22}} \right] _{{n_{2} \times n_{2}}} }&{}\quad {\left[ {{{\varvec{K}}}^{23}} \right] _{{n_{2} \times n_{3}}} } \\ {\left[ {{{\varvec{K}}}^{32}} \right] _{{n_{3} \times n_{2}} }}&{}\quad {\left[ {{{\varvec{K}}}^{33}} \right] _{{n_{3} \times n_{3}}}} \\ \end{array} }} \right] \end{aligned}$$
(53)
$$\begin{aligned} {{\varvec{q}}}= & {} \left( {q_{21} ,\ldots ,q_{{2n_{2}}} ,q_{31} ,\ldots ,q_{{3n_{3}}} } \right) ^\mathrm{T} \end{aligned}$$
(54)
$$\begin{aligned} {{\varvec{Q}}}= & {} \left( {\left[ {{{\varvec{Q}}}^{2}} \right] _{{n_{2} \times 1}}^\mathrm{T} ,\left[ {{{\varvec{Q}}}^{3}} \right] _{{n_{3} \times 1}}^\mathrm{T}} \right) ^{\mathrm{T}} \end{aligned}$$
(55)

whose components are:

$$\begin{aligned}&M_{ij}^{22} =\int _{0}^{1} {\phi _{2i} \phi _{2j} \hbox {d}x} , \quad M_{ij}^{33} =\int _{0}^{1} {\phi _{3i} \phi _{3j} \hbox {d}x} \end{aligned}$$
(56)
$$\begin{aligned}&C_{ij}^{22} =c_{d}\int _0^1 {\phi _{2i} \phi _{2j} \hbox {d}x} , \quad C_{ij}^{33} =c_{d} \int _{0}^{1} {\phi _{3i} \phi _{3j} \hbox {d}x}\nonumber \\ \end{aligned}$$
(57)
$$\begin{aligned} K_{ij}^{22}= & {} \int _{0}^{1} {J_{3} {\phi }''_{2i} {\phi }''_{2j} \hbox {d}x} +\eta ^{2}\int _{0}^{1} {{u}'_{20} {u}'_{20} {\phi }'_{2i} {\phi }'_{2j} \hbox {d}x} \nonumber \\&-\,\gamma ^{2}\int _0^1 {\phi _{2i} \phi _{2j} \hbox {d}x}\nonumber \\&+\,\frac{1}{2}\gamma ^{2}\int _0^1 {{\phi }'_{2i} {\phi }'_{2j} \left( {1-x^{2}+2\delta -2\delta x} \right) \hbox {d}x}\nonumber \\ \end{aligned}$$
(58)
$$\begin{aligned}&K_{ij}^{23} =\int _0^1 {J_{23} {\phi }''_{2i} {\phi }''_{3j} \hbox {d}x} +\eta ^{2}\int _0^1 {{u}'_{20} {u}'_{30} {\phi }'_{2i} {\phi }'_{3j} \hbox {d}x}\nonumber \\ \end{aligned}$$
(59)
$$\begin{aligned} K_{ij}^{32}= & {} \int _{0}^{1} {J_{23} {\phi }''_{3i} {\phi }''_{2j} \hbox {d}x} +\eta ^{2}\int _0^1 {{u}'_{20} {u}'_{30} {\phi }'_{3i} {\phi }'_{2j} \hbox {d}x} \nonumber \\\end{aligned}$$
(60)
$$\begin{aligned} K_{ij}^{33}= & {} \int _{0}^{1} {J_2 {\phi }''_{3i} {\phi }''_{3j} \hbox {d}x} +\eta ^{2}\int _0^1 {{u}'_{30} {u}'_{30} {\phi }'_{3i} {\phi }'_{3j} \hbox {d}x} \nonumber \\&+\,\frac{1}{2}\gamma ^{2}\int _0^1 {{\phi }'_{3i} {\phi }'_{3j} \left( {1-x^{2}+2\delta -2\delta x} \right) \hbox {d}x}\nonumber \\ \end{aligned}$$
(61)
$$\begin{aligned} Q_{i}^{2}= & {} \int _{0}^{1} {\phi _{2i} P_{gas} \sin \left( {\varTheta x+\varPsi } \right) \hbox {d}x} \cos \left( {\omega t} \right) \nonumber \\&-\,\eta ^{2}\left[ \frac{3}{2}\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{2}}} {\left( {\int _{0}^{1} {{u}'_{20} {\phi }'_{2i} {\phi }'_{2j} {\phi }'_{2k} \hbox {d}x} } \right) q_{2j} q_{2k}} }\right. \nonumber \\&+\,\frac{1}{2}\sum _{j=1}^{n_3 } {\sum _{k=1}^{{n_{3}}} {\left( {\int _{0}^{1} {{u}'_{20} {\phi }'_{2i} {\phi }'_{3j} {\phi }'_{3k} \hbox {d}x} } \right) q_{3j} q_{3k}} }\nonumber \\&+\,\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{3}}} {\left( {\int _{0}^{1} {{u}'_{30} {\phi }'_{2i} {\phi }'_{2j} {\phi }'_{3k} \hbox {d}x} } \right) q_{2j} q_{3k} } } \nonumber \\&+\,\frac{1}{2}\sum _{j=1}^{n_2 } {\sum _{k=1}^{{n_{2}}} {\sum _{l=1}^{{n_{2}}} {\left( {\int _{0}^{1} {{\phi }'_{2i} {\phi }'_{2j} {\phi }'_{2k} {\phi }'_{2l} \hbox {d}x} } \right) q_{2j} q_{2k} q_{2l} } } } \nonumber \\&\left. +\,\frac{1}{2}\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{3}}} {\sum _{l=1}^{{n_{3}}} {\left( {\int _{0}^{1} {{\phi }'_{2i} {\phi }'_{2j} {\phi }'_{3k} {\phi }'_{3l} \hbox {d}x} } \right) q_{2j} q_{3k} q_{3l} } } } \right] ,\nonumber \\&\qquad i=1,2,\ldots , n_{2} \end{aligned}$$
(62)
$$\begin{aligned} Q_{i}^{3}= & {} -\int _0^1 {\phi _{3i} P_{gas} \cos \left( {\varTheta x+\varPsi } \right) \hbox {d}x} \cos \left( {\omega t} \right) \nonumber \\&-\,\eta ^{2}\left[ \frac{1}{2}\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{2}}} {\left( {\int _{0}^{1} {{u}'_{30} {\phi }'_{3i} {\phi }'_{2j} {\phi }'_{2k} \hbox {d}x} } \right) q_{2j} q_{2k} } } \right. \nonumber \\&+\,\frac{3}{2}\sum _{j=1}^{{n_{3}}} {\sum _{k=1}^{{n_{3}}} {\left( {\int _{0}^{1} {{u}'_{30} {\phi }'_{3i} {\phi }'_{3j} {\phi }'_{3k} \hbox {d}x} } \right) q_{3j} q_{3k}}}\nonumber \\&+\,\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{3}}} {\left( {\int _{0}^{1} {{u}'_{20} {\phi }'_{3i} {\phi }'_{2j} {\phi }'_{3k} \hbox {d}x}}\right) q_{2j} q_{3k} } } \nonumber \\&+\,\frac{1}{2}\sum _{j=1}^{{n_{3}}} {\sum _{k=1}^{{n_{3}}} {\sum _{l=1}^{{n_{3}}} {\left( {\int _{0}^{1} {{\phi }'_{3i} {\phi }'_{3j} {\phi }'_{3k} {\phi }'_{3l} \hbox {d}x} } \right) q_{3j} q_{3k} q_{3l}} } } \nonumber \\&\left. +\,\frac{1}{2}\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{2}}} {\sum _{l=1}^{{n_{3}}} {\left( {\int _{0}^{1} {{\phi }'_{3i} {\phi }'_{2j} {\phi }'_{2k} {\phi }'_{3l} \hbox {d}x} } \right) q_{2j} q_{2k} q_{3l}} } } \right] ,\nonumber \\&\qquad i=1,2,\ldots ,n_{3} \end{aligned}$$
(63)

The coefficients in Eq.(25) are written as followings.

$$\begin{aligned} f_{2i}= & {} \int _0^1 {\phi _{2i} P_{gas} \sin \left( {\varTheta x+\varPsi } \right) \hbox {d}x} ,f_{3i}\nonumber \\= & {} -\int _{0}^{1} {\phi _{3i} P_{gas} \cos \left( {\varTheta x+\varPsi } \right) \hbox {d}x} \end{aligned}$$
(64)
$$\begin{aligned} \alpha _{ij}^{21}= & {} -c_d \int _{0}^{1} {\phi _{2i} \phi _{2j} \hbox {d}x} ,\alpha _{ij}^{31} =-c_{d} \int _{0}^{1} {\phi _{3i} \phi _{3j} \hbox {d}x} \nonumber \\\end{aligned}$$
(65)
$$\begin{aligned} \alpha _{ijk}^{22}= & {} -\frac{3}{2}\eta ^{2}\int _{0}^{1} {{u}'_{20} {\phi }'_{2i} {\phi }'_{2j} {\phi }'_{2k} \hbox {d}x} ,\alpha _{ijk}^{32}\nonumber \\= & {} -\frac{1}{2}\eta ^{2}\int _{0}^{1} {{u}'_{30} {\phi }'_{3i} {\phi }'_{2j} {\phi }'_{2k} \hbox {d}x} \end{aligned}$$
(66)
$$\begin{aligned} \alpha _{ijk}^{23}= & {} -\frac{3}{2}\eta ^{2}\int _{0}^{1} {{u}'_{20} {\phi }'_{2i} {\phi }'_{3j} {\phi }'_{3k} \hbox {d}x} ,\alpha _{ijk}^{33}\nonumber \\= & {} -\frac{1}{2}\eta ^{2}\int _{0}^{1} {{u}'_{30} {\phi }'_{3i} {\phi }'_{3j} {\phi }'_{3k} \hbox {d}x} \end{aligned}$$
(67)
$$\begin{aligned} \alpha _{ijk}^{24}= & {} -\eta ^{2}\int _{0}^{1} {{u}'_{30} {\phi }'_{2i} {\phi }'_{2j} {\phi }'_{3k} \hbox {d}x} ,\alpha _{ijk}^{34}\nonumber \\= & {} -\eta ^{2}\int _{0}^{1} {{u}'_{20} {\phi }'_{3i} {\phi }'_{2j} {\phi }'_{3k} \hbox {d}x} \end{aligned}$$
(68)

The coefficients in Eqs. (34)–(36) are listed as following formulation.

For 1 \(\le s \le n_{2}\),

$$\begin{aligned} \beta _{10s}= & {} -\sum _{j=1}^{{n_{2}}} {2i\omega _1 M_{sj}^{22} p_{12j}} \end{aligned}$$
(69)
$$\begin{aligned} \beta _{11s}= & {} \sum _{j=1}^{{n_{2}}} {i\omega _1 \alpha _{sj}^{21} p_{12j}} \end{aligned}$$
(70)
$$\begin{aligned} \beta _{12s}= & {} \sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{2}}} {2\alpha _{sjk}^{22} \bar{{p}}_{12j} p_{22k} } } +\sum _{j=1}^{{n_{3}}} {\sum _{k=1}^{{n_{3}}} {2\alpha _{sjk}^{23} \bar{{p}}_{13j} p_{23k}}}\nonumber \\&+\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{3}}} {\alpha _{sjk}^{24} \left( {\bar{{p}}_{12j} p_{23k} +p_{22j} \bar{{p}}_{13k} } \right) } } \end{aligned}$$
(71)
$$\begin{aligned} \beta _{13s}= & {} \frac{f_{2s} }{2} \end{aligned}$$
(72)
$$\begin{aligned} \beta _{20s}= & {} -\sum _{j=1}^{{n_{2}}} {2i\omega _{2} M_{sj}^{22} p_{22j}} \end{aligned}$$
(73)
$$\begin{aligned} \beta _{21s}= & {} \sum _{j=1}^{{n_{2}}} {i\omega _2 \alpha _{sj}^{21} p_{22j}} \end{aligned}$$
(74)
$$\begin{aligned} \beta _{22s}= & {} \sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{2}}} {\alpha _{sjk}^{22} p_{12j} p_{12k} } } +\sum _{j=1}^{{n_{3}}} {\sum _{k=1}^{{n_{3}}} {\alpha _{sjk}^{23} p_{13j} p_{13k}}}\nonumber \\&+\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{3}}} {\alpha _{sjk}^{24} p_{12j} p_{13k}}} \end{aligned}$$
(75)
$$\begin{aligned} \beta _{30s}= & {} -\sum _{j=1}^{{n_{2}}} {2i\omega _3 M_{sj}^{22} p_{32j}} \end{aligned}$$
(76)
$$\begin{aligned} \beta _{31s}= & {} \sum _{j=1}^{{n_{2}}} {i\omega _{3} \alpha _{sj}^{21} p_{32j}} \end{aligned}$$
(77)

For \(n_{2}+1 \le s \le \quad n_{2} + n_{3}\), assume that \({s}'=s-n_2 \), then

$$\begin{aligned} \beta _{10s}= & {} -\sum _{j=1}^{{n_{3}}} {2i\omega _1 M_{{s}'j}^{33} p_{13j}} \end{aligned}$$
(78)
$$\begin{aligned} \beta _{11s}= & {} \sum _{j=1}^{{n_{3}}} {i\omega _1 \alpha _{{s}'j}^{31} p_{13j}} \end{aligned}$$
(79)
$$\begin{aligned} \beta _{12s}= & {} \sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{2}}} {2\alpha _{{s}'jk}^{32} \bar{{p}}_{12j} p_{22k} } }\nonumber \\&+\sum _{j=1}^{{n_{3}}} {\sum _{k=1}^{{n_{3}}} {2\alpha _{{s}'jk}^{33} \bar{{p}}_{13j} p_{23k}}} \nonumber \\&+\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{3}}} {\alpha _{{s}'jk}^{34} \left( {\bar{{p}}_{12j} p_{23k} +p_{22j} \bar{{p}}_{13k} } \right) } } \end{aligned}$$
(80)
$$\begin{aligned} \beta _{13s}= & {} \frac{f_{3{s}'} }{2} \end{aligned}$$
(81)
$$\begin{aligned} \beta _{20s}= & {} -\sum _{j=1}^{{n_{3}}} {2i\omega _{2} M_{{s}'j}^{33} p_{23j}} \end{aligned}$$
(82)
$$\begin{aligned} \beta _{21s}= & {} \sum _{j=1}^{{n_3}} {i\omega _{2} \alpha _{{s}'j}^{31} p_{23j}} \end{aligned}$$
(83)
$$\begin{aligned} \beta _{22s}= & {} \sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{2}}} {\alpha _{{s}'jk}^{32} p_{12j} p_{12k}}} +\sum _{j=1}^{{n_{3}}} {\sum _{k=1}^{{n_{3}}} {\alpha _{{s}'jk}^{33} p_{13j} p_{13k}}}\nonumber \\&+\sum _{j=1}^{{n_{2}}} {\sum _{k=1}^{{n_{3}}} {\alpha _{{s}'jk}^{34} p_{12j} p_{13k}}} \end{aligned}$$
(84)
$$\begin{aligned} \beta _{30s}= & {} -\sum _{j=1}^{{n_{3}}} {2i\omega _3 M_{{s}'j}^{33} p_{33j}} \end{aligned}$$
(85)
$$\begin{aligned} \beta _{31s}= & {} \sum _{j=1}^{{n_{3}}} {i\omega _{3} \alpha _{{s}'j}^{31} p_{33j}} \end{aligned}$$
(86)

In Eqs. (69)–(86), the notation \(p_{r2j}\) (r = 1, 2, 3; \(j= 1, 2,{\ldots }\), \(n_{2})\) represents the \(j^{\mathrm{th}}\) component in the \(r^{\mathrm{th}}\) mode vector of the chrodwise vibration, and \(p_{r3j}\) (\(r = 1, 2, 3; j = 1, 2, \ldots ,n_{3})\) represents that of the flapwise vibration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, Y. Nonlinear vibration of rotating pre-deformed blade with thermal gradient. Nonlinear Dyn 86, 459–478 (2016). https://doi.org/10.1007/s11071-016-2900-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2900-4

Keywords

Navigation