Skip to main content
Log in

Curvature-dependent energies minimizers and visual curve completion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Geometrical actions often used to describe elastic properties of elastic rods and fluid membranes have been proposed recently to explain functional mechanism of the primary visual cortex V1. These energies are defined in terms of functionals depending on the Frenet–Serret curvatures of a curve (profile curve, for axisymmetric membranes) and are relevant in image restoration by curve completion. In this context, extremals of length, total squared curvature (bending energy) and total squared torsion, acting on spaces of curves of the unit tangent bundle of the plane, are studied here. We first see that Sub-Riemannian geodesics in \({\mathbb {R}}^2\times {\mathbb {S}}^1\) project down to minimizers of a total curvature type energy in the plane. This motivates us to analyze the associated variational problem in Euclidean space under different boundary conditions. Although, as we show, parametrized extremals can be obtained by quadratures, their concrete explicit determination faces technical difficulties which can be overcome numerically. We use a numerical approach, based on a gradient descent method, to determine both critical trajectories for these three energies and their projection into the image plane under different boundary and isoperimetric constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arreaga, G., Capovilla, R., Guven, J.: Frenet–Serret dynamics. Class. Quantum Grav. 18, 5065–5084 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arreaga, G., Capovilla, R., Chryssomalakos, C., Guven, J.: Area constrained planar elastica. Phys. Rev. E 65, 0311801 (2002)

    Article  Google Scholar 

  3. Arroyo, J., Barros, M., Garay, O.J.: Models of relativistic particle with curvature and torsion revisited. Gen. Rel. Grav. 36, 1441–1451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arroyo, J., Barros, M., Garay, O.J.: Holography and total charge. J. Geom. Phys. 41, 65–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arroyo, J., Barros, M., Garay, O.J.: Some examples of critical points for the total mean curvature functional. Proc. Edinb. Math. Soc. 43, 587–603 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arroyo, J., Garay, O.J., Pámpano, A.: Extremal curves of a total curvature type energy. In: Mladenov, V. (eds.) Proceedings of the 14th International Conference on Nonlinear Systems, Nonlinear Analysis and Chaos. NOLASC15. Recent Advances in Electrical Engineering Series 55. WSEAS Press, pp. 103–112

  7. Arroyo, J., Garay, O.J., Mencía, J.J.: A gradient-descent method for Lagrangian densities depending on multiple derivatives, preprint

  8. Balaeff, A., Mahadevan, L., Schlouten, K.: Elastic rod models of a DNA loop in the Lac Operon. Phys. Rev. Lett. 83, 4900–4903 (1999)

    Article  Google Scholar 

  9. Ben-Yosef, G., Ben-Shahar, O.: A tangent bundle theory for visual curve completion. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1263–1280 (2012)

    Article  MATH  Google Scholar 

  10. Ben-Yosef, G., Ben-Shahar, O.: Tangent bundle elastica and computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 164–174 (2015)

    Google Scholar 

  11. Bryant, R., Griffiths, P.: Reduction of order for constrained variational problems and \(\int _{\gamma }\frac{\kappa ^{2}}{2} ds\). Am. J. Math. 108, 525–570 (1986)

    Article  MathSciNet  Google Scholar 

  12. Diggins IV, P., McDargh, Z.A., Deserno, M.: Curvature Softening and Negative Compressibility of Gel-Phase Lipid Membranes. J. Am. Chem. Soc. 137(40), 12752–12755 (2015)

    Article  Google Scholar 

  13. Duits, R., Boscain, U., Rossi, F., Sachkov, Y.: Association fields via cuspless sub-Riemannian geodesics in \(SE(2)\). J. Math. Imaging Vis. 49, 384–417 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feoli, A., Nesterenko, V.V., Scarpetta, G.: Functionals linear in curvature and statistics of helical proteins. Nucl. Phys. B 705, 577–592 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jurdjevic, V.: Non-Euclidean elastica. Am. J. Math. 117, 93–124 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Langer, J., Singer, D.A.: The total squared curvature of closed curves. J. Differ. Geom. 20, 1–22 (1984)

  17. Langer, J., Singer, D.A.: Knotted elastic curves in \(\mathbf{R}^{3}\). J. Lond. Math. Soc. 16, 512–520 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Linner, A.: Curve straightening and the Palais–Smale condition. Trans. AMS 350, 3743–3765 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Petitot, J.: The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. 97, 265–309 (2003)

    Google Scholar 

  20. Plyushchay, M.S.: Massless particle with rigidity as a model for the description of bosons and fermions. Phys. Lett. B 243, 383–388 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thamwattana, N., McCoy, J.A., Hill, J.M.: Energy density functionals for protein structures. Q. J. Mech. Appl. Math. 61(3), 431–451 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zang, J., Treibergs, A., Han, Y., Liu, F.: Geometric constant defining shape transitions of carbon nanotubes under pressure. Phys. Rev. Lett. 92, 105501.1 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by MINE CO-FEDER Grant MTM2014-54804-P and Gobierno Vasco Grant IT1094-16, Spain. A. Pámpano has been supported by Programa Predoctoral de Formación de Personal Investigador No Doctor, Dpto de Educación, Política Lingüística y Cultura del Gobierno Vasco, 2015. We also thank the referees for many useful comments which have improved the original version. Finally, we are very grateful to one of the referees for bringing the works [10] and [12] to our attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. J. Garay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyo, J., Garay, O.J. & Pámpano, A. Curvature-dependent energies minimizers and visual curve completion. Nonlinear Dyn 86, 1137–1156 (2016). https://doi.org/10.1007/s11071-016-2953-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2953-4

Keywords

Navigation