Skip to main content
Log in

An efficient approximate method for solving delay fractional optimal control problems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new numerical method for solving the delay fractional optimal control problems (DFOCPs) with quadratic performance index is presented. In the discussed DFOCP, the fractional derivative is considered in the Caputo sense. The method is based upon the Bernoulli wavelets basis. To solve the problem, first the DFOCP is transformed into an equivalent problem with dynamical system without delay. Then, an operational matrix of Riemann–Liouville fractional integration based on Bernoulli wavelets is introduced and is utilized to reduce the problem to the solution of a system of algebraic equations. With the aid of Gauss–Legendre integration formula and Newton’s iterative method for solving a system of algebraic equations, the problem is solved approximately. Also, the convergence of the Bernoulli wavelet basis is obtained. Finally, some examples are given to demonstrate the validity and applicability of the new technique and a comparison is made with the existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agrawal, O.P.: A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 14, 1291–1299 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agrawal, O.P.: Fractional optimal control of a distributed system using eigenfunctions. ASME. J. Comput. Nonlinear Dyn. 3(2), 6 (2008). doi:10.1115/1.2833873

    Article  Google Scholar 

  4. Babolian, E., Fattahzadeh, F.: Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 188(1), 417–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    Article  MATH  Google Scholar 

  6. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econom. 73(5), 5–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bhrawy, A.H., Ezz-Eldien, S.S.: A new Legendre operational technique for delay fractional optimal control problems. Calcolo (2015). doi:10.1007/s10092-015-0160-1

    MATH  Google Scholar 

  9. Chow, T.S.: Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Phys. Lett. A 342, 148–155 (2005)

    Article  Google Scholar 

  10. Dumitru, B., Maraaba, T., Jarad, F.: Fractional variational principles with delay. J. Phys. A Math. Theor. 41(31), 315–403 (2008)

    MathSciNet  MATH  Google Scholar 

  11. El-Ajou, A., Arqub, O.A., Al-Smadi, M.: A general form of the generalized Taylor’s formula with some applications. Appl. Math. Comput. 256, 851–859 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Ajou, A., Arqub, O.A., Zhour, Z.A., Momani, S.: New results on fractional power series: theories and applications. Entropy 15(12), 5305–5323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haddadi, N., Ordokhani, Y., Razzaghi, M.: Optimal control of delay systems by using a hybrid functions approximation. J. Optim. Theory Appl. 153, 338–356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jamshidi, M., Wang, C.M.: A computational algorithm for large-scale nonlinear time-delay systems. IEEE Trans Syst Man Cybern 14, 2–9 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational optimal control problems with delayed arguments. Nonlinear Dyn. 62, 609–614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: A numerical solution for fractional optimal control problems via Bernoulli polynomials. J. Vib. Control 29, 1–15 (2015)

    MathSciNet  Google Scholar 

  17. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38(24), 6038–6051 (2014)

    Article  MathSciNet  Google Scholar 

  18. Khellat, F.: Optimal control of linear time-delayed systems by linear Legendre multiwavelets. J. Optim. Theory Appl. 143, 107–121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

  20. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    MATH  Google Scholar 

  21. Lancaster, P.: Theory of Matrices. Academic Press, New York (1969)

    MATH  Google Scholar 

  22. Li, Y.: Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2284–2292 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lotfi, A., Yousefi, S.A.: A numerical technique for solving a class of fractional variational problems. J. Comput. Appl. Math. 237(1), 633–643 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lotfi, A., Yousefi, S.A., Dehghan, M.: Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule. J. Comput. Appl. Math. 250, 143–160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, J., Liu, J., Zhou, Z.: Convergence analysis of moving finite element methods for space fractional differential equations. J. Comput. Appl. Math. 255, 661–670 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)

    Article  Google Scholar 

  27. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)

    Chapter  Google Scholar 

  28. Marzban, H.R., Razzaghi, M.: Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials. J. Frankl. Inst. 341, 279–293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Odibat, Z., Momani, S., Erturk, V.S.: Generalized differential transform method: application to differential equations of fractional order. Appl. Math. Comput. 197(2), 467–477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ozdemir, N., Agrawal, O.P., Iskender, B.B., Karadeniz, B.: Fractional optimal control of a 2-dimensional distributed system using eigenfunctions. Nonlinear Dyn. 55(3), 251–260 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Postenko, Y.: Time-fractional radial diffusion in sphere. Nonlinear Dyn. 53(1), 55–65 (2008)

    Article  MathSciNet  Google Scholar 

  32. Qi, H., Liu, J.: Time-fractional radial diffusion in hollow geometries. Meccanica 45(4), 577–583 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. (2016). doi:10.1016/j.apm.2016.04.026

    MathSciNet  MATH  Google Scholar 

  34. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. (2016). doi:10.1016/j.cam.2016.06.005

    MATH  Google Scholar 

  35. Rehman, M., Rahmat, R.A.: The Legendre wavelet method for solving fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4163–4173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  37. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  38. Saeedi, H., Mohseni Moghadam, M., Mollahasani, N., Chuev, G.N.: A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1154–1163 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Safaie, E., Farahi, M.H., Farmani Ardehaie, M.: An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials. Comput. Appl. Math. 34(3), 831–846 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  41. Tricaud, C., Chen, Y.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl 59(5), 1644–1655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, X.T.: Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and Legendre polynomials. Appl. Math. Comput. 184(2), 849–856 (2007)

  43. Wang, Q., Chen, F., Huang, F.: Maximum principle for optimal control problem of stochastic delay differential equations driven by fractional Brownian motions. Optim. Control Appl. Methods (2014). doi:10.1002/oca.2155

    MathSciNet  MATH  Google Scholar 

  44. Witayakiattilerd, W.: Optimal regulation of impulsive fractional differential equation with delay and application to nonlinear fractional heat equation. J. Math. Res. 5(2), 94–106 (2013)

    Article  Google Scholar 

  45. Yüzbasi, S.: Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Appl. Math. Comput. 219(11), 6328–6343 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhu, L., Fan, Q.: Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1203–1213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Authors are very grateful to one of the reviewers for carefully reading the paper and for his(her) comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ordokhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimkhani, P., Ordokhani, Y. & Babolian, E. An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dyn 86, 1649–1661 (2016). https://doi.org/10.1007/s11071-016-2983-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2983-y

Keywords

Navigation