Skip to main content
Log in

Analytical and experimental studies on out-of-plane dynamic instability of shallow circular arch based on parametric resonance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Little research about the out-of-plane dynamic stability of arches under in-plane loading has been reported in the literature hitherto. This paper presents analytical and experimental investigations of the out-of-plane dynamic instability of elastic shallow circular arches under an in-plane central concentrated periodic load owing to parametric resonance. Differential equations of out-of-plane motion of shallow arches are established using the Hamilton principle by accounting for the effects of geometric nonlinearity, additional concentrated weights and damping. The analytical solutions of the critical excitation frequencies of the concentrated periodic load for out-of-plane dynamic instability of arches are obtained. The corresponding experimental investigations are also carried out to verify the analytical solutions. Agreements between the analytical and experimental results are very good. In addition, the effects of the central concentrated weight and the in-plane excitation amplitude on out-of-plane dynamic instability of arches are investigated. It is found that as the weight increases, the bandwidth of the critical in-plane excitation frequencies for out-of-plane dynamic instability of the arch decreases. It is also found that the bandwidth of critical frequencies increases with an increase in the excitation amplitude. Furthermore, the nonlinear inertial force is derived, which is essential in determining the out-of-plane parametric resonance. It is shown that the curve of the excitation frequency versus amplitude of out-of-plane vibration bends toward the low-frequency region and that the “traction” out-of-plane instability may occur owing to “amplitude” perturbation. To authors’ knowledge, the analytical solutions and experimental investigations for out-of-plane dynamic instability of arches owing to parametric resonance presented in the paper are first time reported in the literature. The new findings in the paper can provide an in-depth understanding of out-of-plane dynamic instability behavior of arches under a periodic load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Area of the cross section

\(\mathbf{A}\) :

Coefficient matrix of Eq. (26)

\(A_{t_i } \) :

Amplitudes of displacement decay curve at time \(t_{i}\)

\(\mathbf{B}_{i}\) :

= \((2i-1)^{2}({\varvec{\Omega }}^{2})^{-1}/4\)

\(\mathbf{C}\) :

Damping matrix

\(\mathbf{C}_{i}\) :

= \((2i-1){\xi }{} \mathbf{I}\)

D :

Damping dissipation energy

\({EI}_{y}\) :

Out-of-plane bending stiffness

GJ :

Torsional stiffness

H :

Rise of the arch

I :

Identity matrix

\(\mathbf{K}_{e}\) :

Out-of-plane stiffness matrix

\(\mathbf{K}_{g}\) :

Out-of-plane stability matrix

L :

Span of the circular arch

\(\mathscr {L}\) :

Lagrangian of the arch and load system

M :

Out-of-plane mass matrix

\(M_{s}\) :

Mass of the central concentrated weight

\(M(\varphi , t)\) :

In-plane bending moment

\(N(\varphi , t)\) :

Axial compressive force

P(t):

Central periodic load

\(P_\mathrm{cr}\) :

Static out-of-plane instability load of the arch

R :

Radius of the circular arch

T :

Kinetic energy

U :

Strain energy

V :

Work done or potential energy

\(a_{un}, b_{un}\) :

Coefficients of the Fourier series

\(a_{\theta n}, b_{\theta n}\) :

Coefficients of the Fourier series

\(\mathbf{g}(t)\) :

Vector formed by \(u_{1}(t)\) and \(\theta _{1}(t)\)

h :

Time step

m :

Uniformly distributed mass of the arch

\(r_{0}\) :

Polar radius of gyration of the cross section

t :

Time

\(u(\varphi , t)\) :

Lateral displacement

\(u_{1}(t)\) :

Central lateral displacement

\(v({\varphi , t})\) :

Radial displacement

\(w({\varphi , t})\) :

Tangential (axial) displacement

x :

Vector of coefficients of the Fourier series

\(y_{p}\) :

Distance of the load above the shear center

\(T_\mathrm{exc}\) :

Period of the in-plane central load

\(\Delta P(t)\) :

Nonlinear inertial force

\(\Delta v(\varphi , t)\) :

Second-order radial displacements

\(\varvec{\Lambda }\) :

=\({\left[ {\beta _0 P_\mathrm{cr} (\mathbf{K}_e +\alpha _0 P_\mathrm{cr} \mathbf{K}_g )^{-1}{} \mathbf{K}_g } \right] }/2\)

\(\varvec{\Omega }^{2}\) :

= \(\mathbf{M}^{-1} \mathbf{K}_e (\mathbf{I}+\alpha _0 P_\mathrm{cr} \mathbf{K}_e^{-1} \mathbf{K}_g )\)

\(\alpha \) :

Included angle of the circular arch

\(\alpha _{0}\) :

Static coefficient of the central load P(t)

\(\beta \) :

Dimensionless excitation amplitude

\(\beta _{0}\) :

Dynamic coefficient of P(t)

\(\phi (t)\) :

Time function related to P(t)

\(\varphi \) :

Angular coordinate

\(\theta (\varphi , t)\) :

Twist torsion of the cross section

\(\theta _{1}(t)\) :

Central twist torsion

\(\vartheta \) :

Frequency of the in-plane central periodic load

\(\zeta _{}\) :

Damping ratio

\(\xi \) :

Mass-proportional damping coefficient

\(\Xi _M \left( \varphi \right) \) :

Distribution of \(M(\varphi , t)\) along the arch

\(\Xi _N \left( \varphi \right) \) :

Distribution of \(N(\varphi , t)\) along the arch

0 :

Null matrix

\(()' = \hbox {d}()/\hbox {d}s\) :

Derivative with respect to arc length s

\((^\cdot ) = \hbox {d}()/\hbox {d}t\) :

Derivative with respect to time t

References

  1. Humphreys, J.S.: On dynamic snap buckling of shallow arches. AIAA J. 4, 878–886 (1966)

    Article  Google Scholar 

  2. Humphreys, J.S.: On the adequacy of energy criteria for dynamic buckling of arches. AIAA J. 4(5), 921–925 (1996)

    Article  Google Scholar 

  3. Humphreys, J.S.: Experiments on dynamic plastic deformation of shallow circular arches. AIAA J. 4(5), 926–928 (1966)

    Article  Google Scholar 

  4. Donaldson, M.T., Plaut, R.H.: Dynamic stability boundaries for a sinusoidal shallow arch under pulse loads. AIAA J. 21(3), 469–471 (1983)

    Article  Google Scholar 

  5. Gregory, W.E., Plaut, R.H.: Dynamic stability boundaries for shallow arches. J. Eng. Mech. Div. 108(6), 1036–1050 (1982)

    Google Scholar 

  6. Hsu, C.S.: Stability of shallow arches against snap-through under timewise step loads. J. Appl. Mech. 35(1), 31–39 (1968)

    Article  Google Scholar 

  7. Hsu, C.S., Guttalu, R.S.: An unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings. J. Appl. Mech. 47(4), 940–948 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hsu, C.S., Tongue, B.H.: Cell-to-cell mapping. A method of global analysis for nonlinear systems. J. Appl. Mech. 55(3), 749–750 (1988)

    Article  Google Scholar 

  9. Lo, D.L.C., Masur, E.F.: Dynamic buckling of shallow arches. J. Eng. Mech. Div. J. Eng. Mech. Div. 102(EM3), 901–917 (1976)

    Google Scholar 

  10. Kounadis, A.N., Gates, C.J., Bolotin, V.V.: Dynamic buckling loads of autonomous potential systems based on the geometry of the energy surface. Int. J. Eng. Sci. 37, 1611–1628 (1999)

    Article  MATH  Google Scholar 

  11. Matsunaga, H.: In-plane vibration and stability of shallow circular arches subjected to axial forces. Int. J. Solids Struct. 33(4), 469–482 (1996)

    Article  MATH  Google Scholar 

  12. Huang, C.S., Nieh, K.Y., Yang, M.C.: In-plane free vibration and stability of loaded and shear deformable circular arches. Int. J. Solids Struct. 40(22), 5865–5886 (2003)

    Article  MATH  Google Scholar 

  13. Huang, C.S., Tseng, Y.P., Leissa, A.W.: An exact solution for in-plane vibrations of an arch having variable curvature and cross section. Int. J. Eng. Sci. 40(11), 1159–1173 (1998)

    MATH  Google Scholar 

  14. Nieh, K.Y., Huang, C.S., Tseng, Y.P.: An analytical solution for in-plane free vibration and stability of loaded elliptic arches. Comput. Struct. 81(13), 1311–1327 (2003)

    Article  Google Scholar 

  15. Simitses, G.J.: Dynamic Stability of Suddenly Loaded Structures. Springer, Berlin (2012)

    MATH  Google Scholar 

  16. Kounadis, A.N., Gantes, C.J., Raftoyiannis, I.G.: A geometric approach for establishing dynamic buckling loads of autonomous potential N-degree-of-freedom systems. Int. J. Non-Linear Mech. 39(10), 1635–1646 (2004)

    Article  MATH  Google Scholar 

  17. Levitas, J., Singer, J., Weller, T.: Global dynamic stability of a shallow arch by poincaré-like simple cell mapping. Int. J. Non-Linear Mech. 32(2), 411–424 (1997)

    Article  MATH  Google Scholar 

  18. Pi, Y.-L., Bradford, M.A.: Dynamic buckling of shallow pin-ended arches under a sudden central concentrated load. J. Sound Vib. 317(3–5), 898–917 (2008)

    Article  Google Scholar 

  19. Pi, Y.-L., Qu, W., Bradford, M.A.: Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration. Struct. Eng. Mech. 35(5), 555–570 (2010)

    Article  Google Scholar 

  20. Pi, Y.L., Bradford, M.A.: In-plane stability of preloaded shallow arches against dynamic snap-through accounting for rotational end restraints. Eng. Struct. 56, 1496–1510 (2013)

    Article  Google Scholar 

  21. Pi, Y.L., Bradford, M.A.: Multiple unstable equilibrium branches and non-linear dynamic buckling of shallow arches. Int. J. Non-Linear Mech. 60, 33–45 (2014)

    Article  Google Scholar 

  22. Pi, Y.-L., Bradford, M.A.: Nonlinear dynamic buckling of pinned-fixed shallow arches under a sudden central concentrated load. Nonlinear Dyn. 73(3), 1289–1306 (2013)

    Article  MathSciNet  Google Scholar 

  23. Bolotin, V.V.: The Dynamic Stability of Elastic Systems. Aerospace Corporation, El Segundo (1962)

    MATH  Google Scholar 

  24. Bolotin, V.V.: Dynamic Stability of Structures. Nonlinear Stability of Structures. Springer, Vienna (1995)

    MATH  Google Scholar 

  25. Benedettini, F., Alaggio, R., Zulli, D.: Nonlinear coupling and instability in the forced dynamics of a non-shallow arch: theory and experiments. Nonlinear Dyn. 68(4), 505–517 (2012)

    Article  Google Scholar 

  26. Yang, Y.B., Kuo, S.R.: Effect of curvature on stability of curved beams. J. Eng. Mech. 113(6), 821–841 (1987)

    Article  Google Scholar 

  27. Papangelis, J.P., Trahair, N.S.: Flexural-torsional buckling of arches. J. Struct. Eng. 113(4), 889–906 (1987)

    Article  Google Scholar 

  28. Liu, A.R., Huang, Y.H., Yu, Q.C., Rao, R.: An analytical solution for lateral buckling critical load calculation of leaning-type arch Bridge. Math. Probl. Eng. 2014, 578473 (2014)

    MathSciNet  Google Scholar 

  29. Liu, A.R., Huang, Y.H., Fu, J.Y., Yu, Q.C., Rao, R.: Experimental research on stable ultimate bearing capacity of leaning-type arch rib systems. J. Constr. Steel Res. 114, 281–292 (2015)

    Article  Google Scholar 

  30. Pi, Y.-L., Bradford, M.A.: Lateral-torsional elastic buckling of rotationally restrained arches with a thin-walled section under a central concentrated load. Thin-Walled Struct. 73(4), 18–26 (2013)

    Article  MathSciNet  Google Scholar 

  31. Pi, Y.-L., Bradford, M.A., Tong, Q.-S.: Elastic lateral-torsional buckling of circular arches subjected to a central concentrated load. Int. J. Mech. Sci. 52, 847–862 (2010)

    Article  Google Scholar 

  32. Dou, C., Guo, Y.-L., Zhao, S.-Y., Pi, Y.-L., Bradford, M.A.: Effects of shape functions on flexural-torsional buckling of fixed circular arches. Eng. Struct. 59, 238–247 (2014)

    Article  Google Scholar 

  33. Bradford, M.A., Pi, Y.-L.: A new analytical solution for lateral-torsional buckling of arches under axial uniform compression. Eng. Struct. 41, 14–23 (2012)

    Article  Google Scholar 

  34. Pi, Y.-L., Bradford, M.A.: Elastic flexural-torsional buckling of fixed arches. Q. J. Mech. Appl. Math. 57(4), 551–569 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, A.R., Lu, H.W.: The Test Report of Arch Structure Under Concentrated Force for Out-of-Plane Dynamic Buckling. Guangzhou University, Guangzhou (2014)

    Google Scholar 

  36. Trahair, N.S.: Flexural-Torsional Buckling of Structures. E & FN Spon, London (1993)

    MATH  Google Scholar 

  37. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley, New York (2002)

    Google Scholar 

  38. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37, 6964–6978 (2013)

    Article  MathSciNet  Google Scholar 

  39. Brüel & Kjær: PULSE-getting started: an introduction to PULSE. Brüel & Kjær Sound and Vibration Measurement A/S, Nærum (2003)

  40. Dynamics, A.P.S.: Systems for Generating Controlled Vibration: APS 113 ELECTRO-SEIS\(\textregistered \) Long Stroke Shaker with Linear Ball Bearings. APS Dynamics Inc., Dresden (2014)

    Google Scholar 

Download references

Acknowledgments

This investigation was sponsored by National Natural Science Foundation of China through a Research Project (No. 51578166) awarded to the first author, by Guangzhou government through a Yangcheng Fellowship (No. 1201541551), and by Technology Planning Project of Guangdong Province (No. 2016B050501004) awarded to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyang Fu.

Appendices

Appendix 1: Algebraic expressions of energies and works

Substituting Eqs. (7) and (8) into Eqs. (1)–(3) and performing the integrations lead to algebraic expressions for TU, and V in terms of \(u_{1}(t)\) and \(\theta _{1}(t)\). The expression for kinetic energy T of out-of-plane motion of the system can be expressed as

$$\begin{aligned}&T(\dot{u}_1 (t),\dot{\theta }_1 (t))=\left( {\frac{3\alpha Rm}{4}+\frac{M_s }{2}} \right) \nonumber \\&\times \,\left[ {\left( {\dot{u}_1 (t)} \right) ^{2}+r_0^2 \left( {\dot{\theta }_1 (t)} \right) ^{2}} \right] . \end{aligned}$$
(46)

The expression for strain energy U of out-of-plane deformation of the system is given by

$$\begin{aligned}&U(u_1 (t),\theta _1 (t))\nonumber \\&\quad =\frac{EI_y }{4R^{3}}\left[ {\frac{16\pi ^{4}u_1 (t)^{2}}{\alpha ^{3}}-\frac{8\pi ^{2}Ru_1 (t)\theta _1 (t)}{\alpha }+3\alpha R^{2}\theta _1 (t)^{2}} \right] \nonumber \\&\qquad +\frac{GT\pi ^{2}}{R^{3}\alpha }\left[ {u_1 (t)^{2}-2u_1 (t)\theta _1 (t)R+\theta _1 (t)^{2}\hbox {R}^{2}} \right] \end{aligned}$$
(47)

The expression for the work V done by the internal bending moment and axial force and by the external load is given by

$$\begin{aligned}&V(u_1 (t),\theta _1 (t))=P(t)\left[ {k_{uu} u_1 (t)^{2}} \right. \nonumber \\&\quad \left. {\;+\,2k_{u\theta } u_1 (t)\theta _1 (t)+\left( k_{\theta \theta } +\frac{y_p }{2}\right) \theta _1 (t)^{2}} \right] . \end{aligned}$$
(48)

where

$$\begin{aligned} k_{uu}= & {} -\frac{2\pi ^{2}}{R^{2}\alpha ^{2}}\left( {1+\frac{r_0^2 }{R^{2}}} \right) \int _0^\alpha {\Xi _N \left( \varphi \right) \sin ^{2}\left( {{2\pi \varphi }/\alpha } \right) } d\varphi \nonumber \\ \end{aligned}$$
(49)
$$\begin{aligned} k_{u\theta }= & {} \frac{4\pi ^{2}}{\alpha ^{2}}\int _0^\alpha {\Xi _M \left( \varphi \right) \cos \left( {2{\pi \varphi }/\alpha } \right) \sin ^{2}\left( {{\pi \varphi }/\alpha } \right) } d\varphi \nonumber \\&+\frac{\pi ^{2}r_0^2 }{R^{2}\alpha ^{2}}\int _0^\alpha {\Xi _N \left( \varphi \right) \sin ^{2}\left( {{2\pi \varphi }/\alpha } \right) } d\varphi \end{aligned}$$
(50)
$$\begin{aligned} k_{\theta \theta }= & {} \int _0^\alpha {2\Xi _M R} \sin ^{4}(\pi \varphi /\alpha )\hbox {d}\varphi \nonumber \\&-\int _0^\alpha {2\Xi _N \frac{r_0^2 \pi ^{2}}{R^{2}\alpha ^{2}}} \sin ^{2}(2\pi \varphi /\alpha )\hbox {d}\varphi \end{aligned}$$
(51)

Appendix 2. Matrices \(\hbox {A}_{11}, \hbox {A}_{12}, \hbox {A}_{21}, \hbox {A}_{22}\)

Matrices \(\mathbf{A}_{11}, \mathbf{A}_{12}, \mathbf{A}_{21}\), and \(\mathbf{A}_{22 }\) in Eq. (28) are given by

$$\begin{aligned} \mathbf{A}_{11} =\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} \cdots &{} \cdots &{} \cdots &{} \cdots &{} \cdots \\ \cdots &{} {\mathbf{I}-\mathbf{B}_i \vartheta ^{2}}&{} \cdots &{} \mathbf{0}&{} \mathbf{0} \\ \cdots &{} \cdots &{} \cdots &{} \cdots &{} \cdots \\ \cdots &{} \mathbf{0}&{} \cdots &{} {\mathbf{I}-\mathbf{B}_2 \vartheta ^{2}}&{} {-{\varvec{\Lambda }}} \\ \cdots &{} \mathbf{0}&{} \cdots &{} {-{\varvec{\Lambda }}}&{} {\mathbf{I}+{\varvec{\Lambda }}-\mathbf{B}_1 \vartheta ^{2}} \\ \end{array} }} \right] \nonumber \\ \end{aligned}$$
(52)

with \(\mathbf{B}_i =\frac{\left( {2i-1} \right) ^{2}}{4}({\varvec{\Omega }}^{2})^{-1}\),

$$\begin{aligned} \mathbf{A}_{12} =\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} \cdots &{} \cdots &{} \cdots &{} \cdots &{} \cdots \\ \mathbf{0}&{} \mathbf{0}&{} \cdots &{} {-\mathbf{C}_i \vartheta }&{} \cdots \\ \cdots &{} \cdots &{} \cdots &{} \cdots &{} \cdots \\ \mathbf{0}&{} {-\mathbf{C}_2 \vartheta }&{} \cdots &{} \mathbf{0}&{} \cdots \\ {-\mathbf{C}_1 \vartheta }&{} \mathbf{0}&{} \cdots &{} \mathbf{0}&{} \cdots \\ \end{array} }} \right] \end{aligned}$$
(53)

\(\hbox {with }{} \mathbf{C}_i =(2i-1)\zeta \mathbf{I}\),

$$\begin{aligned} \mathbf{A}_{21} =\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} \cdots &{} \mathbf{0}&{} \cdots &{} \mathbf{0}&{} \mathbf{C}_1 \vartheta \\ \cdots &{} \mathbf{0}&{} \cdots &{} \mathbf{C}_2 \vartheta &{} \mathbf{0} \\ \cdots &{} \cdots &{} \cdots &{} \cdots &{} \cdots \\ \cdots &{} \mathbf{C}_i \vartheta &{} \cdots &{} \mathbf{0}&{} \mathbf{0} \\ \cdots &{} \cdots &{} \cdots &{} \cdots &{} \cdots \\ \end{array}}} \right] , \end{aligned}$$
(54)

and

$$\begin{aligned} \mathbf{A}_{22} =\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {\mathbf{I}-{\varvec{\Lambda }}-\mathbf{B}_1 \vartheta ^{2}}&{} {-{\varvec{\Lambda }}}&{} \cdots &{} \mathbf{0}&{} \cdots \\ {-{\varvec{\Lambda }}}&{} {\mathbf{I}-\mathbf{B}_2 \vartheta ^{2}}&{} \cdots &{} \mathbf{0}&{} \cdots \\ \cdots &{} \cdots &{} \cdots &{} \cdots &{} \cdots \\ \mathbf{0}&{} \mathbf{0}&{} \cdots &{} {\mathbf{I}-\mathbf{B}_i \vartheta ^{2}}&{} \cdots \\ \cdots &{} \cdots &{} \cdots &{} \cdots &{} \cdots \\ \end{array} }} \right] \nonumber \\ \end{aligned}$$
(55)

where 0 is the null matrix and I is the identity matrix.

Appendix 3: Matrices \(\hbox {A}_{1}, \hbox {A}_{2}\), and \(\hbox {A}_{3}\)

Matrices \(\mathbf{A}_{1}, \mathbf{A}_{2}\), and \(\mathbf{A}_{3}\) in Eq. (29) are given by

$$\begin{aligned} \mathbf{A}_1= & {} \left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ {\ldots }&{} \mathbf{I}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{I}&{} {-{\varvec{\Lambda }}}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} {-{\varvec{\Lambda }}}&{} {\mathbf{I}+{\varvec{\Lambda }}}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} {\mathbf{I}-{\varvec{\Lambda }}}&{} {-{\varvec{\Lambda }}}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} {-{\varvec{\Lambda }}}&{} \mathbf{I}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{I}&{} {\ldots } \\ {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ \end{array} }} \right] \nonumber \\ \end{aligned}$$
(56)
$$\begin{aligned} \mathbf{A}_2= & {} \left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} {-\mathbf{C}_i }&{} {\ldots } \\ {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {-\mathbf{C}_2 }&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} {-\mathbf{C}_1 }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\mathbf{C}_1 }&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} {\mathbf{C}_2 }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ {\ldots }&{} {\mathbf{C}_i }&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ \end{array} }} \right] \nonumber \\ \end{aligned}$$
(57)

and

$$\begin{aligned} \mathbf{A}_3 =\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ {\ldots }&{} {\mathbf{B}_i }&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} {\mathbf{B}_2 }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\mathbf{B}_1 }&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} {\mathbf{B}_1 }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {\mathbf{B}_2 }&{} {\ldots }&{} \mathbf{0}&{} {\ldots } \\ {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ {\ldots }&{} \mathbf{0}&{} {\ldots }&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} \mathbf{0}&{} {\ldots }&{} {\mathbf{B}_i }&{} {\ldots } \\ {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots }&{} {\ldots } \\ \end{array} }} \right] \end{aligned}$$
(58)

Appendix 4: Nonlinear inertial force

The out-of-plane deformations can produce second-order in-plane displacements \(\Delta v(\varphi , t)\), which will induce nonlinear inertia in association with the mass of the arch and additional central weight. It can be shown [24] that the second-order in-plane curvature produced by the out-of-plane deformations can be expressed as

$$\begin{aligned} \frac{\partial ^{2}\Delta v(\varphi ,t)}{\partial \varphi ^{2}}\approx \frac{\partial ^{2}u(\varphi ,t)}{\partial \varphi ^{2}}\theta (\varphi ,t). \end{aligned}$$
(59)

By integrating Eq. (46) twice, the second-order in-plane radial displacement \(\Delta v(\varphi , t)\) can be obtained as

$$\begin{aligned} \Delta v(\varphi ,t)= & {} \int \int {\frac{\partial ^{2}u(\varphi ,t)}{\partial \varphi ^{2}}} \theta (\varphi ,t)\hbox {d}\varphi \hbox {d}\varphi _1 \nonumber \\&+\int \int {C\varphi } \hbox {d}\varphi \hbox {d}\varphi _1 +\int \int {C_1 } \hbox {d}\varphi \hbox {d}\varphi _1.\nonumber \\ \end{aligned}$$
(60)

Substituting the lateral and torsional displacements \(u(\varphi , t)\) and \(\theta (\varphi , t)\) given by Eqs. (7) and (8) into Eq. (47) and considering the fixed boundary conditions at both ends of the arch lead to

$$\begin{aligned} \Delta v(\varphi ,t)\!=\!\frac{u_1 (t)\theta _1 (t)}{8}\left[ {7-8\cos \frac{2\pi \varphi }{\alpha }\!+\!\cos \frac{4\pi \varphi }{\alpha }} \right] .\nonumber \\ \end{aligned}$$
(61)

Subsequently, the second-order radial displacement at the crown of the arch \((\varphi = \alpha /2)\) can be obtained as

$$\begin{aligned} \Delta v(\alpha /2,t)=2u_1 (t)\theta _1 (t). \end{aligned}$$
(62)

The nonlinear inertia force of the arch and central concentrated weight can then be obtained as

$$\begin{aligned} \Delta P(t)= & {} -M_s \Delta \ddot{v}(\alpha /2,t)-\int _0^\alpha m \Delta \ddot{v}(\varphi ,t)R\hbox {d}\varphi \nonumber \\= & {} -2M_s \left( {\ddot{u}_1 (t)\theta (t)+2\dot{u}_1 (t)\dot{\theta }_1 (t)+u_1 (t)\ddot{\theta }_1 (t)} \right) \nonumber \\&+\frac{7R\alpha m}{8}\left( {\ddot{u}_1 (t)\theta (t)+2\dot{u}_1 (t)\dot{\theta }_1 (t)+u_1 (t)\ddot{\theta }_1 (t)} \right) .\nonumber \\ \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Lu, H., Fu, J. et al. Analytical and experimental studies on out-of-plane dynamic instability of shallow circular arch based on parametric resonance. Nonlinear Dyn 87, 677–694 (2017). https://doi.org/10.1007/s11071-016-3068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3068-7

Keywords

Navigation