Skip to main content
Log in

Prescribed performance slide mode guidance law with terminal line-of-sight angle constraint against maneuvering targets

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new terminal homing guidance law with line-of-sight angle constraint for a missile to intercept a noncooperative maneuvering target by integrating prescribed performance control with sliding mode control. The newly proposed guidance law is derived analytically with a prescribed performance controller in combination with the continuous nonsingular terminal sliding mode manifold and the disturbance observer. The prescribed performance controller is designed with a new prescribed performance function to avoid undesired abrupt change in the derivative of prescribed performance variable. In addition to its robustness and preciseness, this new homing guidance law is able to attenuate a largely abrupt change in guidance commands due to driving the sliding mode variable whose initial derivative is close to zero to a desired residual set at the beginning of the terminal homing phase. Furthermore, the time-varying control gain of the new guidance law is analytically determined by terminal tolerance. Theoretical analysis and numerical simulations are conducted to demonstrate the effectiveness of this new guidance law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He, S., Lin, D., Wang, J.: Robust terminal angle constraint guidance law with autopilot lag for intercepting maneuvering targets. Nonlinear Dyn. 81(1), 881–892 (2015)

    Article  MATH  Google Scholar 

  2. Zarchan, P.: Tactical and Strategic Missile Guidance. American Institute of Aeronautics and Astronautics Publications, New York (1998)

    Google Scholar 

  3. Padhi, R., Chawla, C., Das, P.G.: Partial integrated guidance and control of interceptors for high-speed ballistic targets. J. Guid. Control Dyn. 37(1), 149–163 (2013)

    Article  Google Scholar 

  4. Shneydor, N.A.: Missile Guidance and Pursuit: Kinematics, Dynamics and Control. Horwood Publish, Cambridge (1998)

    Book  Google Scholar 

  5. Sarkar, A.K., Ghose, D.: Realistic pursuer evader engagement with feedback linearization based nonlinear guidance law. In: AIAA Guidance, Navigation,and Control Conference and Exhibit, pp. 2006–6096 (2006)

  6. Menon, P.K., Ohlmeyer, E.J.: Integrated design of agile missile guidance and autopilot systems. Control Eng. Pract. 9(10), 1095–1106 (2001)

    Article  Google Scholar 

  7. Gil, W., Ilan, R.: All-aspect three-dimensional guidance law based on feedback linearization. J. Guid. Control Dyn. 38(12), 2421–2428 (2015)

    Article  Google Scholar 

  8. Qu, P., Shao, C., Zhou, D.: Finite time convergence guidance law accounting for missile autopilot. J. Dyn. Syst.-T. ASME. 137(5), 051014 (2015)

    Article  Google Scholar 

  9. Song, J.H., Song, S.M.: Three-dimensional guidance law based on adaptive integral sliding mode control. Chin. J. Aeronaut. 29(1), 202–214 (2015)

    Article  Google Scholar 

  10. Song, H., Zhang, T., Zhang, G., Lu, C.: Robust dynamic surface control of nonlinear systems with prescribed performance. Nonlinear Dyn. 76(1), 599–608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bechlioulis, C., Provithakis, G.: Adaptive control with guaranteed transient and steady state tracking errors bounds for strict feedback systems. Automatica 45(2), 532–538 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, B.S., Lee, J.G., Han, H.S.: Biased PNG law for impact with angular constraint. IEEE Trans. Aerosp. Electron. Syst. 34(1), 277–288 (1998)

    Article  Google Scholar 

  13. Ryoo, C.K., Cho, H., Tahk, M.J.: Optimal guidance laws with terminal impact angle constraint. J. Guid. Control Dyn. 28(4), 724–732 (2005)

    Article  Google Scholar 

  14. Sun, X., Xia, Y.: Optimal guidance law for cooperative attack of multiple missiles based on optimal control theory. Int. J. Control 85(8), 1063–1070 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhou, D., Sun, S.: Guidance laws with finite time convergence. J. Guid. Control Dyn. 32(6), 1838–1846 (2009)

    Article  Google Scholar 

  16. Zhang, Y.X., Sun, M.W., Chen, Z.Q.: Finite-time convergent guidance law with impact angle constraint based on sliding mode control. Nonlinear Dyn. 70(1), 619–625 (2012)

    Article  MathSciNet  Google Scholar 

  17. Wang, X.H., Wang, J.Z.: Partial integrated missile guidance and control with finite time convergence. J. Guid. Control Dyn. 36(5), 1399–1409 (2013)

    Article  Google Scholar 

  18. Lu, K., Xia, Y.: Finite-time Intercept-angle guidance. Int. J. Control 88(2), 264–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kumar, S.R., Rao, S., Ghose, D.: Nonsingular terminal sliding mode guidance with impact angle constraints. J. Guid. Control Dyn. 37(4), 1114–1130 (2014)

    Article  Google Scholar 

  20. Zhou, J., Yang, J.: Smooth sliding mode control for missile interception with finite-time convergence. J. Guid. Control Dyn. 38(7), 1311–1318 (2015)

    Article  Google Scholar 

  21. He, S., Lin, D.: Sliding mode-based continuous guidance law with terminal angle constraint. Aeronaut. J. 120(1229), 1175–1195 (2016)

    Article  Google Scholar 

  22. Shima, T.: Intercept-angle guidance. J. Guid. Control Dyn. 34(2), 484–492 (2011)

    Article  Google Scholar 

  23. Yin, C., Cheng, Y.Q., Chen, Y., Stark, B., Zhong, S.: Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dyn. 82(1), 39–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yin, C., Chen, Y.Q., Zhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

  25. Feng, Y., Han, F., Yu, X.: Chattering free full-order sliding-mode control. Automatica 50(4), 1310–1314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 28(11), 2159–2167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hong, Y., Huang, J., Xu, Y.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46(2), 305–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Guidance and control of missile interceptor using second-order sliding modes. IEEE Trans. Aerosp. Electron. Syst. 45(1), 110–124 (2009)

    Article  Google Scholar 

  31. Ginoya, D., Shendge, P.: Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Ind. Electron. 61(4), 1983–1992 (2014)

    Article  Google Scholar 

  32. Ding, S., Zhang, Z., Chen, X.: Guidance law design based on non-smooth control. Trans. Inst. Meas. Control 35(8), 1116–1128 (2013)

    Article  Google Scholar 

  33. Zhang, X., Yao, Y., He, F.: A study on biased guidance problem ofthe space flight vehicle. In: Control Conference (CCC), 2016 35thChinese. TCCT, pp. 5671–5676 (2016)

Download references

Acknowledgements

This work is supported by the China Scholarship Council and the Discovery Grant of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng H. Zhu.

Appendix

Appendix

The parameter \(\alpha \) at \(t\ge t_0\) is determined by following steps.

  • Step 1 Determine an inequality

    $$\begin{aligned} \exp \left( {-\alpha \left( {t-t_0} \right) } \right) -1{+}\alpha \left( {t-t_0} \right) >\alpha \left( {t-t_0} \right) {-}1\nonumber \\ \end{aligned}$$
    (43)
  • Step 2 Determine the interception initial time-to-go for missile as,

    $$\begin{aligned} t_{go} =\frac{R_f -R_0}{{\dot{R}}_0} \end{aligned}$$
    (44)
  • Step 3 Determine the precision of PPV \(\rho _1 (t_f, R_f)\) at terminal time

    (45)

    where \(\zeta \) is a positive constant which satisfies \(\zeta \le \rho _\mathrm{end}\) and \(t_f\) represents the terminal time.

  • Step 4 Determine the value of \(\alpha \).

    $$\begin{aligned} \alpha\approx & {} \frac{\ln \left( {{\left( {\left. {s_e} \right| _{t=t_0} -\rho _\infty } \right) }/{\rho _1 \left( {t_f ,R_f } \right) }} \right) R_f}{R_0 t_{go}} \nonumber \\&+\,\frac{1+\Delta }{t_{go}} \end{aligned}$$
    (46)

    where \(\Delta \) is a positive constant to speed up the convergence of \(\rho _1 (t,R)\) and assure the terminal precision of \(\rho _1 (t_f ,R_f)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, S., Zhu, Z.H., Tang, S. et al. Prescribed performance slide mode guidance law with terminal line-of-sight angle constraint against maneuvering targets. Nonlinear Dyn 88, 2101–2110 (2017). https://doi.org/10.1007/s11071-017-3365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3365-9

Keywords

Navigation