Skip to main content
Log in

The Melnikov method for detecting chaotic dynamics in a planar hybrid piecewise-smooth system with a switching manifold

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2022

This article has been updated

Abstract

In this paper, we extend the classical Melnikov method for smooth systems to a class of planar hybrid piecewise-smooth system subjected to a time-periodic perturbation. In this class, we suppose there exists a switching manifold with a more general form such that the plane is divided into two zones, and the dynamics in each zone is governed by a smooth system. Furthermore, we assume that the unperturbed system is a general planar piecewise-smooth system with non-zero trace and possesses a piecewise-smooth homoclinic orbit transversally crossing the switching manifold. We also define a reset map to describe the instantaneous impact rule on the switching manifold when a trajectory arrives at the switching manifold. Through a series of geometrical analysis and perturbation techniques, we obtain a Melnikov-type function to measure the separation of the unstable manifold and stable manifold under the effect of the time-periodic perturbations and the reset map. Finally, we use the presented Melnikov function to study global bifurcations and chaotic dynamics for a concrete planar piecewise-linear oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Brogliato, B.: Nonsmooth Mechanics. Springer, London (1999)

    Book  MATH  Google Scholar 

  2. Bernardo, M.D., Kowalczyk, P., Nordmark, A.B.: Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry friction oscillators. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13, 2935–2948 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banerjee, S., Verghese, G.: Nonlinear Phenomena in Power Electronics: Bifurcations, Chaos, Control, and Applications. Wiley, New York (2001)

    Book  Google Scholar 

  4. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity and scaling. ASME J. Biomech. Eng. 120, 281–288 (1998)

    Article  Google Scholar 

  5. Bernardo, M.D., Garofalo, L., Vasca, F.: Bifurcations in piecewise-smooth feedback systems. Int. J. Control 75, 1243–1259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Melnikov, V.K.: On the stability of the center for time periodic perturbations. Tans. Mosc. Math. Soc. 12, 1–57 (1963)

    MathSciNet  Google Scholar 

  7. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical System and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  8. Wiggins, S.: Global Bifurcations and Chaos-Analytical Methods. Springer, New York (1988)

    Book  MATH  Google Scholar 

  9. Palmer, K.J.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equat. 55, 225C256 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pascoletti, A., Zanolin, F.: Example of a suspension bridge ODE model exhibiting chaotic dynamics: a topological approach. J. Math. Anal. Appl. 339, 1179–1198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Z., Zhang, W.: Melnikov method for homoclinic bifurcations in nonlinear impact oscillators. Comput. Math. Appl. 50, 445–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, J., Du, Z.: Homoclinic bifurcation in a quasiperiodically excited impact inverted pendulum. Nonlinear Dyn. 79, 445–458 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kunze, M.: Non-smooth Dynamical Systems. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  14. Shi, L.S., Zou, Y.K., Küpper, T.: Melnikov method and detection of chaos for non-smooth systems. Acta Math. Appl. Sin. Engl. Ser. 29, 881–896 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kukučka, P.: Melnikov method for discontinuous planar systems. Nonlinear Anal. 66, 2698–2719 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Battelli, F., Fečkan, M.: Homoclinic trajectories in discontinuous systems. J. Dyn. Differ. Equat. 20, 337–376 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Battelli, F., Fečkan, M.: On the chaotic behaviour of discontinuous systems. J. Dyn. Differ. Equat. 23, 495–540 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Battelli, F., Fečkan, M.: Bifurcation and chaos near sliding homoclinics. J. Differ. Equat. 248, 2227–2262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Battelli, F., Fečkan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Phys. D 241, 1962–1975 (2012)

    Article  MathSciNet  Google Scholar 

  20. Li, S.B., Zhang, W., Hao, Y.X.: Melnikov-type method for a class of discontinuous planar systems and applications. Int. J. Bifurc. Chaos 24(1450022), 1–18 (2014)

    MathSciNet  Google Scholar 

  21. Granados, A., Hogan, S.J., Seara, T.M.: The Melnikov method and subharmonic orbits in a piecewise-smooth system. SIAM J. Appl. Dyn. Syst. 11, 801–830 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carmona, V., Fernández-García, S., Freire, E., Torres, F.: Melnikov theory for a class of planar hybrid systems. Phys. D 248, 44–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, S.B., Ma, W.S., Zhang, W., Hao, Y.X.: Melnikov method for a class of planar hybrid piecewise-smooth systems. Int. J. Bifurc. Chaos 26(1650030), 1–12 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Li, S.B., Shen, C., Zhang, W., Hao, Y.X.: The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application. Nonlinear Dyn. 85, 1091–1104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Calamai, A., Franca, M.: Mel’nikov methods and homoclinic orbits in discontinuous systems. J. Dyn. Differ. Equat. 25, 733–764 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, S.B., Shen, C., Zhang, W., Hao, Y.X.: Homoclinic bifurcations and chaotic dynamics for a piecewise linear system under a periodic excitation and a viscous damping. Nonlinear Dyn. 79, 2395–2406 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Castro, J., Alvarez, J.: Melnikov-type chaos of planar systems with two discontinuities. Int. J. Bifurc. Chaos 25, 1550027 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tian, R.L., Zhou, Y.F., Zhang, B.L., Yang, X.W.: Chaotic threshold for a class of impulsive differential system. Nonlinear Dyn. 79, 445–458 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant Nos. 11672326, 11472298, 11290152, 11472056, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB), the Fundamental Research Funds for the Central Universities through Grant No. ZXH2012K004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangbao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Gong, X., Zhang, W. et al. The Melnikov method for detecting chaotic dynamics in a planar hybrid piecewise-smooth system with a switching manifold. Nonlinear Dyn 89, 939–953 (2017). https://doi.org/10.1007/s11071-017-3493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3493-2

Keywords

Navigation