Skip to main content
Log in

Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Modeling and nonlinear vibration analysis of graphene-reinforced composite (GRC) laminated beams resting on elastic foundations in thermal environments are presented. The graphene reinforcements are assumed to be aligned and are distributed either uniformly or functionally graded of piece-wise type along the thickness of the beam. The motion equations of the beams are based on a higher-order shear deformation beam theory and von Kármán strain displacement relationships. The beam–foundation interaction and thermal effects are also included. The temperature-dependent material properties of GRCs are estimated through a micromechanical model. A two-step perturbation approach is employed to determine the nonlinear-to-linear frequency ratios of GRC laminated beams. Detailed parametric studies are carried out to investigate the effects of material property gradient, temperature variation, stacking sequence as well as the foundation stiffness on the linear and nonlinear vibration characteristics of the GRC laminated beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.: Electric filed effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  2. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)

    Article  Google Scholar 

  3. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  Google Scholar 

  4. Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)

    Article  Google Scholar 

  5. Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)

    Article  Google Scholar 

  6. Das, T.K., Prusty, S.: Graphene-based polymer composites and their applications. Polym. Plast. Technol. Eng. 52, 319–331 (2013)

    Article  Google Scholar 

  7. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)

    Article  Google Scholar 

  8. Zhao, X., Zhang, Q., Chen, D., Lu, P.: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43, 2357–2363 (2010)

    Article  Google Scholar 

  9. Chatterjee, S., Wang, J.W., Kuo, W.S., Tai, N.H., Salzmann, C., Li, W.L., Hollertz, R., Nüesch, F.A., Chu, B.T.T.: Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem. Phys. Lett. 531, 6–10 (2012)

    Article  Google Scholar 

  10. Chu, K., Jia, C.-C., Li, W.-S.: Effective thermal conductivity of graphene-based composites. Appl. Phys. Lett. 101, 121916 (2012)

    Article  Google Scholar 

  11. Shadlou, S., Ahmadi-Moghadam, B., Taheri, F.: The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites. Mater. Des. 59, 439–447 (2014)

    Article  Google Scholar 

  12. Li, D., Liu, Y., Ma, H., Wang, Y., Wang, L., Xie, Z.: Preparation and properties of aligned graphene composites. RSC Adv. 5, 31670–31676 (2015)

    Article  Google Scholar 

  13. Sun, Y., Shi, G.: Graphene/polymer composites for energy applications. J. Polym. Sci. B Polym. Phys. 51, 231–253 (2013)

    Article  Google Scholar 

  14. Yang, Y.H., Bolling, L., Priolo, M.A., Grunlan, J.C.: Super gas barrier and selectivity of graphene oxide–polymer multilayer thin films. Adv. Mater. 25, 503–508 (2013)

    Article  Google Scholar 

  15. Al-Mashat, L., Shin, K., Kalantar-zadeh, K., Plessis, J.D., Han, S.H., Kojima, R.W., Kaner, R.B., Li, D., Guo, X., Ippolito, S.J., Wlodarski, W.: Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 114, 16168–16173 (2010)

    Article  Google Scholar 

  16. Chandra, Y., Chowdhury, R., Scarpa, F., Adhikari, S., Sienz, J., Arnold, C., Murmu, T., Bould, D.: Vibration frequency of graphene based composites: a multiscale approach. Mater. Sci. Eng. B 177, 303–310 (2012)

    Article  Google Scholar 

  17. Rafiee, M.A., Rafiee, J., Yu, Z.Z., Koratkar, N.: Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95, 223103 (2009)

    Article  Google Scholar 

  18. Parashar, A., Mertiny, P.: Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite. Nanoscale Res. Lett. 7, 515–520 (2012)

    Article  Google Scholar 

  19. Milani, M.A., González, D., Quijada, R., Basso, N.R.S., Cerrada, M.L., Azambuja, D.S., Galland, G.B.: Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos. Sci. Technol. 84, 1–7 (2013)

    Article  Google Scholar 

  20. Jiang, S.-D., Bai, Z.-M., Tang, G., Hu, Y., Song, L.: Fabrication and characterization of graphene oxide-reinforced poly (vinyl alcohol)-based hybrid composites by the sol–gel method. Compos. Sci. Technol. 102, 51–58 (2014)

    Article  Google Scholar 

  21. Kulkarni, D.D., Choi, I., Singamaneni, S.S., Tsukruk, V.V.: Graphene oxide–polyelectrolyte nanomembranes. ACS Nano 4, 4667–4676 (2010)

    Article  Google Scholar 

  22. Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  23. Ke, L.L., Yang, J., Kitipornchai, S.: Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92, 676–683 (2010)

    Article  Google Scholar 

  24. Wu, H.L., Yang, J., Kitipornchai, S.: Nonlinear vibration of functionally graded carbon nanotube reinforced composite beams with geometric imperfections. Compos. Part B 90, 86–96 (2016)

    Article  Google Scholar 

  25. Shen, H.-S., Xiang, Y.: Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng. Struct. 56, 698–708 (2013)

    Article  Google Scholar 

  26. Lin, F., Xiang, Y.: Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 38, 3741–3754 (2014)

    Article  MathSciNet  Google Scholar 

  27. Lin, F., Xiang, Y.: Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams. Int. J. Struct. Stab. Dyn. 14, 1350056 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R., Sadeghi, F.: Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos. Struct. 113, 316–327 (2014)

    Article  Google Scholar 

  29. Fan, Y., Wang, H.: Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments. Compos. Struct. 124, 35–43 (2015)

    Article  Google Scholar 

  30. Rafiee, M., Yang, J., Kitipornchai, S.: Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos. Struct. 96, 716–725 (2013)

    Article  Google Scholar 

  31. He, X.Q., Rafiee, M., Mareishi, S.: Nonlinear dynamics of piezoelectric nanocomposite energy harvesters under parametric resonance. Nonlinear Dyn. 79, 1863–1880 (2015)

    Article  MATH  Google Scholar 

  32. He, X.Q., Rafiee, M., Mareishi, S., Liew, K.M.: Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams. Compos. Struct. 131, 1111–1123 (2015)

    Article  Google Scholar 

  33. Shenas, A.G., Malekzadeh, P., Ziaee, S.: Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 162, 325–340 (2017)

    Article  Google Scholar 

  34. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. Part B Eng. 110, 132–140 (2017)

    Article  Google Scholar 

  35. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng. Struct. 140, 110–119 (2017)

    Article  Google Scholar 

  36. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017)

    Article  Google Scholar 

  37. Yang, J., Wu, H.L., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Article  Google Scholar 

  38. Wu, H.L., Yang, J., Kitipornchai, S.: Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017)

    Article  Google Scholar 

  39. Song, M.T., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Article  Google Scholar 

  40. Shen, H.-S.: Nonlinear analysis of functionally graded fiber reinforced composite laminated beams in hygrothermal environments, part I: theory and solutions. Compos. Struct. 125, 698–705 (2015)

    Article  Google Scholar 

  41. Shen, H.-S.: Nonlinear analysis of functionally graded fiber reinforced composite laminated beams in hydrothermal environments, part II: numerical results. Compos. Struct. 125, 706–712 (2015)

    Article  Google Scholar 

  42. Shen, H.-S., Xiang, Y., Lin, F.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput. Methods Appl. Mech. Eng. 319, 175–193 (2017)

    Article  MathSciNet  Google Scholar 

  43. Shen, H.-S., Xiang, Y., Lin, F.: Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos. Struct. 170, 80–90 (2017)

    Article  Google Scholar 

  44. Shen, H.-S., Xiang, Y., Lin, F., Hui, D.: Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Compos. Part B Eng. 119, 67–78 (2017)

    Article  Google Scholar 

  45. Shen, H.-S., Xiang, Y., Lin, F.: Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations. Thin-Walled Struct. 118, 229–237 (2017)

    Article  Google Scholar 

  46. Shen, H.-S., Lin, F., Xiang, Y.: Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations. Eng. Struct. 140, 89–97 (2017)

    Article  Google Scholar 

  47. Hu, K., Kulkarni, D.D., Choi, I., Tsukruk, V.V.: Graphene–polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)

    Article  Google Scholar 

  48. Giannopoulos, G.I., Kallivokas, I.G.: Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase. Finite Elem. Anal. Des. 90, 31–40 (2014)

    Article  Google Scholar 

  49. Zhao, X., Zhang, Q., Chen, D.: Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43, 2357–2363 (2010)

    Article  Google Scholar 

  50. Lin, F., Xiang, Y., Shen, H.-S.: Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites—a molecular dynamics simulation. Compos. Part B Eng. 111, 261–269 (2017)

    Article  Google Scholar 

  51. Schapery, R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2, 380–404 (1968)

    Article  Google Scholar 

  52. Shen, L., Shen, H.-S., Zhang, C.-L.: Temperature-dependent elastic properties of single layer graphene sheets. Mater. Des. 31, 4445–4449 (2010)

    Article  Google Scholar 

  53. Tsai, S.W., Hahn, H.T.: Introduction to Composite Materials. Technomic Publishing Co., Westport (1980)

    Google Scholar 

  54. Levinson, M.: A new rectangular beam theory. J. Sound Vib. 74, 81–87 (1981)

    Article  MATH  Google Scholar 

  55. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2003)

    Google Scholar 

  56. Li, J., Li, X., Hua, H.: Free vibration analysis of third-order shear deformable composite beams using dynamic stiffness method. Arch. Appl. Mech. 79, 1083–1098 (2009)

    Article  MATH  Google Scholar 

  57. Shen, H.-S.: A novel technique for nonlinear analysis of beams on two-parameter elastic foundations. Int. J. Struct. Stab. Dyn. 11, 999–1014 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  58. Shen, H.-S.: A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells. Wiley, Singapore (2013)

    Book  MATH  Google Scholar 

  59. Matsunaga, H.: Vibration and buckling of multilayered composite beams according to higher order deformation theories. J. Sound Vib. 246, 47–62 (2001)

    Article  Google Scholar 

  60. Marur, S.R., Kant, T.: On the angle ply higher order beam vibrations. Comput. Mech. 40, 25–33 (2007)

    Article  MATH  Google Scholar 

  61. Wu, Z., Chen, W.J.: An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams. Compos. Struct. 84, 337–349 (2008)

    Article  Google Scholar 

  62. Vo, T.P., Thai, H.T.: Free vibration of axially loaded rectangular composite beams using refined shear deformation theory. Compos. Struct. 94, 3379–3387 (2012)

    Article  Google Scholar 

  63. Li, Z.-M., Qiao, P.: On an exact bending curvature model for nonlinear free vibration analysis shear deformable anisotropic laminated beams. Compos. Struct. 108, 243–258 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China under Grant 51779138, and the Australian Research Council Grant DP140104156. The authors are very grateful for these financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Shen Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, HS., Lin, F. & Xiang, Y. Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn 90, 899–914 (2017). https://doi.org/10.1007/s11071-017-3701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3701-0

Keywords

Navigation