Skip to main content
Log in

Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study a variable-coefficient nonlinear Schrödinger (vc-NLS) equation with fourth-order effects describing an inhomogeneous one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain or alpha helical protein. The first-order nonautonomous breather solution of the fourth-order vc-NLS equation is derived. The state transition between nonautonomous breather and nonautonomous multi-peak soliton can be realized when group velocity dispersion (GVD) coefficient is proportional to the fourth-order dispersion (FOD) coefficient. We also display how the higher-order effects influence the nonautonomous multi-peak solitons. Our results show that the velocity and localization of the nonautonomous multi-peak soliton are affected by the FOD coefficient, and the peak number is controlled by the GVD coefficient. Further, we also show the compression effect and motion with variable velocity of nonautonomous multi-peak soliton in two kinds of dispersion management systems. Finally, we reveal the relation between the state transition and the modulation instability (MI) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, B., Akhmediev, N., Dias, F., Dudley, J.M.: Observation of Kuznetsov–Ma soliton dynamics in optical fibre. Sci. Rep. 236, 463 (2012)

    Article  Google Scholar 

  3. Akhmediev, N.N., Kornee, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089 (1986)

    Article  MATH  Google Scholar 

  4. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755 (2014)

    Article  Google Scholar 

  5. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16 (1983)

    Article  MATH  Google Scholar 

  6. Shrira, V.I., Geogjaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, G., Li, L., Jia, S., Mihalache, D.: High power pulses extracted from the Peregrine rogue wave. Rom. Rep. Phys. 65, 391 (2013)

    Google Scholar 

  8. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47 (2013)

    Article  MathSciNet  Google Scholar 

  9. Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B Fluids 22, 603 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chabchoub, A., Hoffmann, N., Onorato, M., Akhmediev, N.: Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 106, 011015 (2012)

    Google Scholar 

  11. Osborne, A.R.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Elsevier, Amsterdam (2010)

    MATH  Google Scholar 

  12. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  13. Porter, A., Smyth, N.F.: Modelling the morning glory of the Gulf of Carpentaria. J. Fluid Mech. 454, 1 (2002)

    Article  MATH  Google Scholar 

  14. Soto-Crespo, J.M., Grelu, P., Akhmediev, N.: Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers. Phys. Rev. E 84, 016604 (2011)

    Article  Google Scholar 

  15. Dai, C.Q., Tian, Q., Zhu, S.Q.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)

    Article  Google Scholar 

  16. Wang, L., Jiang, D.Y., Qi, F.H., Shi, Y.Y., Zhao, Y.C.: Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model. Commun. Nonlinear Sci. Numer. Simul. 42, 502 (2017)

    Article  MathSciNet  Google Scholar 

  17. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675 (2009)

    Article  MATH  Google Scholar 

  18. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2002)

    MATH  Google Scholar 

  19. Li, M., Tian, B., Liu, W.J., Zhang, H.Q., Meng, X.H., Xu, T.: Soliton-like solutions of a derivative nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 62, 919 (2010)

    Article  MATH  Google Scholar 

  20. Gao, X.Y.: Density-fluctuation symbolic computation on the (3+1)-dimensional variable-coefficient Kudryashov Sinelshchikov equation for a bubbly liquid with experimental support. Mod. Phys. Lett. B 30, 1650217 (2016)

    Article  MathSciNet  Google Scholar 

  21. Gao, X.Y.: Bäcklund transformation and shock-wave-type solutions for a generalized (3t1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics. Ocean Eng. 96, 245 (2015)

    Article  Google Scholar 

  22. Wang, X., Liu, C., Wang, L.: Darboux transformation and rogue wave solutions for the variable-coefficients coupled Hirota equations. J. Math. Anal. Appl. 449, 1534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lü, X., Peng, M.: Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells–Fokas model. Chaos 23, 013122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett. 90, 113902 (2003)

    Article  Google Scholar 

  25. Wang, L., Li, X., Qi, F.H., Zhang, L.L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell–Bloch equations. Ann. Phys. 359, 97 (2015)

    Article  MATH  Google Scholar 

  26. Wang, L., Zhu, Y.J., Qi, F.H., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells–Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)

    Article  MathSciNet  Google Scholar 

  27. Bogatyrev, V.A., Bubnov, M.M., Dianov, E.M., Kurkov, A.S., Mamyshev, P.V., Prokhorov, A.M., Rumyantsev, S.D., Semenov, V.A., Semenov, S.L., Sysoliatin, A.A., Chernikov, S.V., Guryanov, A.N., Devyatykh, G.G., Miroshnichenko, S.I.: A single-mode fiber with chromatic dispersion varying along the length. J. Lightwave Technol. 9, 561 (1991)

    Article  Google Scholar 

  28. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. E 71, 056619 (2005)

    Article  MathSciNet  Google Scholar 

  29. Yan, Z.Y., Konotop, V.V., Akhmediev, N.: Three-dimensional rogue waves in nonstationary parabolic potentials. Phys. Rev. E 82, 036610 (2010)

    Article  MathSciNet  Google Scholar 

  30. Zhong, W.P., Belić, M., Malomed, B.A., Huang, T.W.: Breather management in the derivative nonlinear Schrödinger equation with variable coefficients. Ann. Phys. 355, 313 (2015)

    Article  MATH  Google Scholar 

  31. He, J.S., Tao, Y.S., Porsezian, K., Fokas, A.S.: Rogue wave management in an inhomogeneous Nonlinear Fibre with higher order effects. J. Nonlinear Math. Phys. 20, 407 (2013)

    Article  MathSciNet  Google Scholar 

  32. Dai, C.Q., Zhou, G.Q., Zhang, J.F.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)

    Article  Google Scholar 

  33. Zhong, W.P., Chen, L., Belić, M., Petrović, N.: Controllable parabolic-cylinder optical rogue wave. Phys. Rev. E 90, 043201 (2014)

    Article  Google Scholar 

  34. Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, L., Tian, B., Chai, H.P., Yuan, Y.Q.: Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber. Phys. Rev. E 95, 032202 (2017)

    Article  Google Scholar 

  36. Liu, C., Yang, Z.Y., Zhao, L.C., Duan, L., Yang, G.Y., Yang, W.L.: Symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime. Phys. Rev. E 94, 042221 (2016)

    Article  Google Scholar 

  37. Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: State transition induced by higher-order effects and background frequency. Phys. Rev. E 91, 022904 (2015)

    Article  Google Scholar 

  38. Chai, J., Tian, B., Zhen, H.L., Sun, W.Y., Liu, D.Y.: Dynamic behaviors for a perturbed nonlinear Schrödinger equation with the power-law nonlinearity in a non-Kerr medium. Commun. Nonlinear Sci. Numer. Simul. 45, 93 (2017)

    Article  MathSciNet  Google Scholar 

  39. Marklund, M., Shukla, P.K., Stenflo, L.: Ultrashort solitons and kinetic effects in nonlinear metamaterials. Phys. Rev. E 73, 037601 (2006)

    Article  Google Scholar 

  40. Wang, L., Wang, Z.Q., Sun, W.R., Shi, Y.Y., Li, M., Xu, M.: Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell–Bloch system. Commun. Nonlinear Sci. Numer. Simul. 47, 190 (2017)

    Article  MathSciNet  Google Scholar 

  41. Zhao, L.C., Li, S.C., Ling, L.M.: W-shaped solitons generated from a weak modulation in the Sasa-Satsuma equation. Phys. Rev. E 93, 032215 (2016)

    Article  MathSciNet  Google Scholar 

  42. Wang, L., Zhu, Y.J., Wang, Z.Q., Xu, T., Qi, F.H., Xue, Y.S.: Asymmetric Rogue waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota–Maxwell–Bloch system. J. Phys. Soc. Jpn. 85, 024001 (2016)

    Article  Google Scholar 

  43. Wang, L., Li, S., Qi, F.H.: Breather-to-soliton and rogue wave-to-soliton transitions in a resonant erbium-doped fiber system with higher-order effects. Nonlinear Dyn. 85, 389 (2016)

    Article  MathSciNet  Google Scholar 

  44. Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)

    Article  MathSciNet  Google Scholar 

  45. Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

    Article  Google Scholar 

  46. Wang, L., Wang, Z.Q., Zhang, J.H., Qi, F.H., Li, M.: Stationary nonlinear waves, superposition modes and modulational instability characteristics in the AB system. Nonlinear Dyn. 86, 185 (2016)

    Article  Google Scholar 

  47. Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: Transition, coexistence, and interaction of vector localized waves arising from higher-order effects. Ann. Phys. 362, 130 (2015)

    Article  MathSciNet  Google Scholar 

  48. Ren, Y., Yang, Z.Y., Liu, C., Yang, W.L.: Different types of nonlinear localized and periodic waves in an erbium-doped fiber system. Phys. Lett. A 379, 2991 (2015)

    Article  Google Scholar 

  49. Zhang, J.H., Wang, L., Liu, C.: Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects. Proc. R. Soc. A 473, 20160681 (2017)

    Article  MathSciNet  Google Scholar 

  50. Chowdury, A., Ankiewicz, A., Akhmediev, N.: Moving breathers and breather-to-soliton conversions for the Hirota equation. Proc. R. Soc. A 471, 20150130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    Article  MathSciNet  Google Scholar 

  52. Zakharov, V.E., Gelash, A.A.: Nonlinear stage of modulation instability. Phys. Rev. Lett. 111, 054101 (2013)

    Article  Google Scholar 

  53. Yang, J.W., Gao, Y.T., Wang, Q.M., Su, C.Q., Feng, Y.J., Yu, X.: Bilinear forms and soliton solutions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or an alpha helical protein. Phys. B 481, 148 (2016)

    Article  Google Scholar 

  54. Yang, J.W., Gao, Y.T., Su, C.Q., Wang, Q.M., Lan, Z.Z.: Breathers and rogue waves in a Heisenberg ferromagnetic spin chain or an alpha helical protein. Commun. Nonlinear Sci. Numer. Simul. 48, 340 (2017)

    Article  MathSciNet  Google Scholar 

  55. Xie, X.Y., Tian, B., Chai, J., Wu, X.Y., Jiang, Y.: Dark soliton collisions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or alpha helical protein. Nonlinear Dyn. 86, 131 (2016)

  56. Su, C.Q., Qin, N., Li, J.G.: Conservation laws, nonautonomous breathers and rogue waves for a higher-order nonlinear Schrödinger equation in the inhomogeneous optical fiber. Superlattices Microstruct. 100, 381 (2016)

    Article  Google Scholar 

  57. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    Article  MathSciNet  Google Scholar 

  58. Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Article  Google Scholar 

  59. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Phys. Rev. E 91, 022919 (2015)

    Article  MathSciNet  Google Scholar 

  60. Yang, R.C., Li, L., Hao, R.Y., Li, Z.H., Zhou, G.S.: Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrödinger equation. Phys. Rev. E 71, 036616 (2005)

    Article  MathSciNet  Google Scholar 

  61. Yin, H.M., Tian, B., Zhen, H.L., Chai, J., Liu, L., Sun, Y.: Solitons, bilinear Bäcklund transformations and conservation laws for a (2+1)-dimensional Bogoyavlenskii–Kadontsev–Petviashili equation in a fluid, plasma or ferromagnetic thin film. J. Mod. Opt. 64, 725 (2012)

    Article  Google Scholar 

  62. Sabry, R., Moslem, W.M., Shukla, P.K.: Amplitude modulation of hydromagnetic waves and associated rogue waves in magnetoplasmas. Phys. Rev. E 86, 036408 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant (Nos. 11305060, 11271126, 11705290 and 61505054), by the Fundamental Research Funds of the Central Universities (Project No. 2015ZD16), by China Postdoctoral Science Foundation funded sixtieth batches (No. 2016M602252). Lei Wang put forward the idea of this paper. Lei Wang and Liu-ying Cai contributed all mathematical calculation and physical analysis. Lei Wang and Liu-ying Cai wrote the paper. Xin Wang, Min Li, Yong Liu and Yu-ying Shi polished the language. Liu-ying Cai generated all the figures and was responsible for all simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Liu-Ying Cai and Lei Wang are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, LY., Wang, X., Wang, L. et al. Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Nonlinear Dyn 90, 2221–2230 (2017). https://doi.org/10.1007/s11071-017-3797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3797-2

Keywords

Navigation