Skip to main content
Log in

Controlling extreme multistability of memristor emulator-based dynamical circuit in flux–charge domain

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Memristive circuit with infinitely many equilibrium points can exhibit the special phenomenon of extreme multistability, whose dynamics mechanism and physical control are significant issues deserving in-depth investigations. In this paper, a control strategy for extreme multistability exhibited in an active band pass filter-based memristive circuit is explored in flux–charge domain. To this end, an incremental flux–charge model is established with four additional constant parameters reflecting the initial conditions of all dynamic elements. Thus, the line equilibrium point only related to memristor initial condition in the voltage–current domain is transformed into some determined equilibrium points, whose locations and stabilities are explicitly related to all four initial conditions. Consequently, the initial condition-dependent extreme multistability phenomenon, which has not been quantitatively analyzed in the voltage–current domain, can readily be investigated through evaluating these determined equilibrium points. Most important of all, the initial condition-dependent dynamical behaviors are formulated as the system parameter-dependent behaviors in the newly constructed flux–charge model and thus can be rigorously captured in a hardware equivalent realization circuit. Numerical simulations and experimental measurements reveal that the control of extreme multistability is successfully achieved in flux–charge domain, which is significant for seeking potential engineering applications of multistable memristive circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fortuna, L., Frasca, M., Xibilia, M.G.: Chua’s Circuit Implementations: Yesterday, Today and Tomorrow. World Scientific, Singapore (2009)

    Book  Google Scholar 

  2. Wang, X., Vaidyanathan, S., Volos, C., Pham, V.T., Kapitaniak, T.: Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors. Nonlinear Dyn. 89(3), 1673–1687 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pham, V.T., Volos, C., Jafari, S., Kapitaniak, T.: Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn. 87(3), 2001–2010 (2017)

    Article  MATH  Google Scholar 

  4. Wang, Z., Akgul, A., Pham, V.T., Jafari, S.: Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors. Nonlinear Dyn. 89(3), 1877–1887 (2017)

    Article  Google Scholar 

  5. Sprott, J.C., Jafari, S., Khalaf, A.J.M., Kapitaniak, T.: Megastability: coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. Eur. Phys. J. Spec. Top. 226(9), 1979–1985 (2017)

    Article  Google Scholar 

  6. Ngouonkadi, E.B.M., Fotsin, H.B., Fotso, P.L., Tamba, V.K., Cerdeira, H.A.: Bifurcations and multistability in the extended hindmarsh-rose neuronal oscillator. Chaos Solitons Fractals 85, 151–163 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, C.B., Sprott, J.C.: Multistability in the Lorenz system: a broken butterfly. Int. J. Bifurc. Chaos 24(10), 1450131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu, Q., Lin, Y., Bao, B.C., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83, 186–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ojoniyi, O.S., Njah, A.N.: A 5D hyperchaotic Sprott B system with coexisting hidden attractors. Chaos Solitons Fractals 87, 172–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jaros, P., Perlikowski, P., Kapitaniak, T.: Synchronization and multistability in the ring of modified Rössler oscillators. Eur. Phys. J. Spec. Top. 224(8), 1541–1552 (2015)

    Article  Google Scholar 

  11. Njitacke, Z.T., Fotsin, H.B., Negou, A.N., Tchiotsop, D.: Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit. Chaos Solitons Fractals 91, 180–197 (2016)

    Article  MATH  Google Scholar 

  12. Kengne, J., Tabekoueng, Z.N., Tamba, V.K., Negou, A.N.: Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos 25(10), 103126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83(1–2), 751–765 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bao, B.C., Li, Q.D., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26(4), 043111 (2016)

    Article  MathSciNet  Google Scholar 

  15. Chen, M., Xu, Q., Lin, Y., Bao, B.C.: Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit. Nonlinear Dyn. 87(2), 789–802 (2017)

    Article  Google Scholar 

  16. Bao, B.C., Jiang, T., Wang, G.Y., Jin, P.P., Bao, H., Chen, M.: Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 89(2), 1157–1171 (2017)

    Article  Google Scholar 

  17. Bao, B.C., Jiang, T., Xu, Q., Chen, M., Wu, H.G., Hu, Y.H.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86(3), 1711–1723 (2016)

    Article  Google Scholar 

  18. Yuan, F., Wang, G.Y., Wang, X.W.: Extreme multistability in a memristor-based multi-scroll hyper-chaotic system. Chaos 26(7), 073107 (2016)

    Article  MathSciNet  Google Scholar 

  19. Hens, C., Dana, S.K., Feudel, U.: Extreme multistability: attractor manipulation and robustness. Chaos 25(5), 053112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Patel, M.S., Patel, U., Sen, A., Sethia, G.C., Hens, C., Dana, S.K., Feudel, U., Showalter, K., Ngonghala, C.N., Amritkar, R.E.: Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. Phys. Rev. E 89(2), 022918 (2014)

    Article  Google Scholar 

  21. Hens, C.R., Banerjee, R., Feudel, U., Dana, S.K.: How to obtain extreme multistability in coupled dynamical systems. Phys. Rev. E 85(3), 035202 (2012)

    Article  Google Scholar 

  22. Ngonghala, C.N., Feudel, U., Showalter, K.: Extreme multistability in a chemical model system. Phys. Rev. E 83(5), 056206 (2011)

    Article  Google Scholar 

  23. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, C.B., Pehlivan, I., Sprott, J.C.: Amplitude-phase control of a novel chaotic attractor. Turk. J. Electr. Eng. Comput. Sci. 24, 1–11 (2016)

    Article  Google Scholar 

  25. Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1485–1491 (2015)

    Article  Google Scholar 

  26. Dudkowski, D., Prasad, A., Kapitaniak, T.: Perpetual points: new tool for localization of coexisting attractors in dynamical systems. Int. J. Bifurc. Chaos 27(4), 1750063 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gotthans, T., Petrzela, J.: New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81, 1143–1149 (2015)

    Article  MathSciNet  Google Scholar 

  28. Jafari, S., Sprott, J.C., Molaie, M.: A simple chaotic flow with a plane of equilibria. Int. J. Bifurc. Chaos 26(6), 1650098 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Q.D., Hu, S.Y., Tang, S., Zeng, G.: Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl. 42(11), 1172–1188 (2014)

    Article  Google Scholar 

  30. Bao, B.C., Hu, F.W., Liu, Z., Xu, J.P.: Mapping equivalent approach to analysis and realization of memristor based dynamical circuit. Chin. Phys. B 23(7), 070503 (2014)

    Article  Google Scholar 

  31. Fitch, A.L., Yu, D.S., Iu, H.H.C., Sreeram, V.: Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 22(6), 1250133 (2012)

    Article  MATH  Google Scholar 

  32. Yuan, F., Wang, G.Y., Wang, X.W.: Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos 27(3), 033103 (2017)

    Article  MathSciNet  Google Scholar 

  33. Bao, B.C.: Reply: Comment on ’Is memristor a dynamic element?’. Electron. Lett. 50(19), 1344–1345 (2014)

    Article  Google Scholar 

  34. Corinto, F., Forti, M.: Memristor circuits: flux–charge analysis method. IEEE Trans. Circuits Syst. I Reg. Pap. 63(11), 1997–2009 (2016)

    Article  Google Scholar 

  35. Corinto, F., Forti, M.: Memristor circuits: bifurcations without parameters. IEEE Trans. Circuits Syst. I Reg. Pap. 64(6), 1540–1551 (2017)

    Article  Google Scholar 

  36. Yang, Q.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifurc. Chaos 18(5), 1393–1414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qi, G.Y., Chen, G.R.: A spherical chaotic system. Nonlinear Dyn. 81(3), 1381–1392 (2015)

    Article  MathSciNet  Google Scholar 

  38. Tahir, F.R., Jafari, S., Pham, V.T., Volos, C., Wang, X.: A novel no-equilibrium chaotic system with multiwing butterfly attractors. Int. J. Bifurc. Chaos 25(4), 1550056 (2015)

    Article  MathSciNet  Google Scholar 

  39. Li, H.F., Wang, L.D., Duan, S.K.: A memristor-based scroll chaotic system—design, analysis and circuit implementation. Int. J. Bifurc. Chaos 24(7), 1450099 (2014)

    Article  MATH  Google Scholar 

  40. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(5), 1335–1350 (2010)

    Article  MATH  Google Scholar 

  41. Bao, B.C., Bao, H., Wang, N., Chen, M., Xu, Q.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94, 102–111 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61601062, 51607013, and 51277017 and the Natural Science Foundation of Jiangsu Province, China, under Grant No. BK20160282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bocheng Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Sun, M., Bao, B. et al. Controlling extreme multistability of memristor emulator-based dynamical circuit in flux–charge domain. Nonlinear Dyn 91, 1395–1412 (2018). https://doi.org/10.1007/s11071-017-3952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3952-9

Keywords

Navigation