Skip to main content

Advertisement

Log in

Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is dedicated to the optimal design of a bistable nonlinear energy sink (NES) for the vibration control of a periodically excited linear oscillator. This system with negative linear and cubic nonlinear coupling is analytically studied with the method of multiple scales. As a result, a slow invariant manifold is obtained and is applied to predict four typical response regimes at different energy levels. Moreover, asymptotic analysis and Melnikov analysis are, respectively, used to obtain the thresholds of these typical responses. Through their efficiency comparison, it is observed that the bistable NES can be efficient and robust in a broad range of excitation amplitude. With the Hilbert transform and wavelet transform, targeted energy transfer with transient or permanent 1:1 resonance is found to be responsible for the effectiveness of such responses as strongly modulated response and 1:1 resonance. Finally, an optimal design criterion and a corresponding parameter configuration are proposed to guide the application of this type of NES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Targeted Energy Transfer in Mechanical and Structural Systems, vol. 156. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Lee, Y., Vakakis, A.F., Bergman, L., McFarland, D., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 222(2), 77–134 (2008)

    Google Scholar 

  3. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., Mcloskey, R.: Energy pumping in nonlinear mechanical oscillators: part I: dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: part II: resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3), 522–551 (2007)

    Article  Google Scholar 

  6. Lee, Y.S., Kerschen, G., McFarland, D.M., Hill, W.J., Nichkawde, C., Strganac, T.W., Bergman, L.A., Vakakis, A.F.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA J. 45(10), 2391–2400 (2007)

    Article  Google Scholar 

  7. Viguié, R., Kerschen, G., Golinval, J.C., McFarland, D., Bergman, L., Vakakis, A., Van de Wouw, N.: Using passive nonlinear targeted energy transfer to stabilize drill-string systems. Mech. Syst. Signal Process. 23(1), 148–169 (2009)

    Article  Google Scholar 

  8. Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015)

    Article  Google Scholar 

  9. Nucera, F., Iacono, F.L., McFarland, D., Bergman, L., Vakakis, A.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results. J. Sound Vib. 313(1), 57–76 (2008)

    Article  Google Scholar 

  10. Luo, J., Wierschem, N.E., Hubbard, S.A., Fahnestock, L.A., Quinn, D.D., McFarland, D.M., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Eng. Struct. 77, 34–48 (2014)

    Article  Google Scholar 

  11. Anubi, O.M., Crane, C.: A new semiactive variable stiffness suspension system using combined skyhook and nonlinear energy sink-based controllers. IEEE Trans. Control Syst. Technol. 23(3), 937–947 (2015)

    Article  Google Scholar 

  12. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non Linear Mech. 40(6), 891–899 (2005)

    Article  MATH  Google Scholar 

  13. Kerschen, G., McFarland, D.M., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299(4), 822–838 (2007)

    Article  MATH  Google Scholar 

  14. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79(1), 011012 (2012)

    Article  Google Scholar 

  15. Sigalov, G., Gendelman, O., Al-Shudeifat, M., Manevitch, L., Vakakis, A., Bergman, L.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704 (2012)

    Article  MathSciNet  Google Scholar 

  16. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315(3), 732–745 (2008)

    Article  Google Scholar 

  17. Lamarque, C.H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Actamechanica 221(1–2), 175 (2011)

    MATH  Google Scholar 

  18. Nucera, F., Vakakis, A.F., McFarland, D., Bergman, L., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007)

    Article  MATH  Google Scholar 

  19. Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Non Linear Mech. 52, 96–109 (2013)

    Article  Google Scholar 

  20. Bellet, R., Cochelin, B., Herzog, P., Mattei, P.O.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329(14), 2768–2791 (2010)

    Article  Google Scholar 

  21. AL-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10(1), 014502 (2015)

    Article  Google Scholar 

  22. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. 136(2), 021021 (2014)

    Article  Google Scholar 

  23. Li, T., Seguy, S., Berlioz, A.: Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn. 87(4), 2415–2433 (2016)

    Article  Google Scholar 

  24. Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4), 763–780 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gendelman, O., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)

    Article  Google Scholar 

  26. Gendelman, O., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51(1), 31–46 (2008)

    MATH  Google Scholar 

  27. Starosvetsky, Y., Gendelman, O.: Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Johnson, D.R., Thota, M., Semperlotti, F., Wang, K.: On achieving high and adaptable damping via a bistable oscillator. Smart Mater. Struct. 22(11), 115027 (2013)

    Article  Google Scholar 

  29. Gourdon, E., Lamarque, C.H.: Energy pumping with various nonlinear structures: numerical evidences. Nonlinear Dyn. 40(3), 281–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Savadkoohi, A.T., Manevitch, L.I., Lamarque, C.H.: Analysis of the transient behavior in a two dof nonlinear system. Chaos Solitons Fractals 44(6), 450–463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Harne, R., Thota, M., Wang, K.: Bistable energy harvesting enhancement with an auxiliary linear oscillator. Smart Mater. Struct. 22(12), 125028 (2013)

    Article  Google Scholar 

  32. AL-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76(4), 1905–1920 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 179–196 (2017)

    Article  Google Scholar 

  34. Harne, R., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  Google Scholar 

  35. Manevitch, L., Sigalov, G., Romeo, F., Bergman, L., Vakakis, A.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81(4), 041011 (2014)

    Article  Google Scholar 

  36. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlinear Dynam. 10(1), 011007 (2015)

    Article  Google Scholar 

  37. Romeo, F., Manevitch, L., Bergman, L., Vakakis, A.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos Interdiscip. J. Nonlinear Sci. 25(5), 053109 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fang, X., Wen, J., Yin, J., Yu, D.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87(4), 2677–2695 (2017)

    Article  Google Scholar 

  39. Mattei, P.O., Ponçot, R., Pachebat, M., Côte, R.: Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment. J. Sound Vib. 373, 29–51 (2016)

    Article  Google Scholar 

  40. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2. Springer, Berlin (2003)

    MATH  Google Scholar 

  41. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer, Berlin (2013)

    MATH  Google Scholar 

  42. Starosvetsky, Y., Gendelman, O.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312(1), 234–256 (2008)

    Article  Google Scholar 

  43. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47(1), 285–309 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by CSC (Grant No. 201404490066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, D., Li, T., Seguy, S. et al. Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn 92, 443–461 (2018). https://doi.org/10.1007/s11071-018-4067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4067-7

Keywords

Navigation