Skip to main content
Log in

Reconstruction of stability for Gaussian spatial solitons in quintic–septimal nonlinear materials under \({{\varvec{\mathcal {P}}}}{\varvec{\mathcal {T}}}\)-symmetric potentials

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Gaussian spatial soliton solutions of both the constant-coefficient and variable-coefficient (2 + 1)-dimensional nonlinear Schrödinger equations in quintic–septimal nonlinear materials with different diffractions are presented under two kinds of \({\mathcal {P}}{\mathcal {T}}\)-symmetric potentials. The linear stability analysis and direct numerical simulation are jointly utilized to investigate the stability for analytical solutions of the constant-coefficient equation. Results from the linear stability analysis and the direct numerical simulation possess a high degree of consistency, that is, the stable case for Gaussian spatial solitons of the constant-coefficient equation appears only in the defocusing quintic and focusing septimal nonlinear material. Moreover, reconstruction of stable Gaussian spatial solitons of the variable-coefficient equation is studied based on the expression of the effective propagation distance Z(z) by choosing an appropriate form of diffraction \(\beta _1(z)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ding, D.J., Jin, D.Q., Dai, C.Q.: Analytical solutions of differential-difference sine-Gordon equation. Therm. Sci. 21, 1701–1705 (2017)

    Article  Google Scholar 

  2. Liu, W.J., Yu, W.T., Liu, M.L., Zhang, Y.J., Lei, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Nonlinear Dyn. 89, 2933–2939 (2017)

    Article  MathSciNet  Google Scholar 

  3. Zhang, B., Zhang, X.L., Dai, C.Q.: Discussions on localized structures based on equivalent solution with different forms of breaking soliton model. Nonlinear Dyn. 87, 2385–2393 (2017)

    Article  MathSciNet  Google Scholar 

  4. Wang, Y.Y., Zhang, Y.P., Dai, C.Q.: Re-study on localized structures based on variable separation solutions from the modified tanh-function method. Nonlinear Dyn. 83, 1331–1339 (2016)

    Article  MathSciNet  Google Scholar 

  5. Zhou, Q., Biswas, A.: Optical solitons in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr law nonlinearity. Superlattices Microstruct. 109, 588–598 (2017)

    Article  Google Scholar 

  6. Chen, R.P., Dai, C.Q.: Three-dimensional vector solitons and their stabilities in a Kerr medium with spatially inhomogeneous nonlinearity and transverse modulation. Nonlinear Dyn. 88, 2807–2816 (2017)

    Article  MathSciNet  Google Scholar 

  7. Zhou, Q.: Analytic study on optical solitons in a Kerr-law medium with an imprinted parity-time-symmetric mixed linear-nonlinear lattice. Proc. Rom. Acad. Ser. A 18, 223–230 (2017)

    MathSciNet  Google Scholar 

  8. Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Analytical spatiotemporal localizations for the generalized (3+1)-dimensional nonlinear Schrodinger equation. Opt. Lett. 35, 1437–1439 (2010)

    Article  Google Scholar 

  9. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1993)

    MATH  Google Scholar 

  10. Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)

    Article  MathSciNet  Google Scholar 

  11. Pusharov, D.I., Tanev, S.: Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities. Opt. Commun. 124, 354–364 (1996)

    Article  Google Scholar 

  12. Wang, Y.Y., Chen, L., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic–quintic nonlinearity. Nonlinear Dyn. 90, 1269–1275 (2017)

    Article  MathSciNet  Google Scholar 

  13. Reyna, A.S., Malomed, B.A., de Araújo, C.B.: Stability conditions for one-dimensional optical solitons in cubic–quintic-septimal media. Phys. Rev. A 92, 033810 (2015)

    Article  Google Scholar 

  14. Chen, Y.X., Xu, F.Q., Hu, Y.L.: Two-dimensional Gaussian-type spatial solitons in inhomogeneous cubic–quintic-septimal nonlinear media under PT-symmetric potentials. Nonlinear Dyn. 90, 1115–1122 (2017)

    Article  MathSciNet  Google Scholar 

  15. Dai, C.Q., Chen, R.P., Wang, Y.Y., Fan, Y.: Dynamics of light bullets in inhomogeneous cubic–quintic-septimal nonlinear media with PT-symmetric potentials. Nonlinear Dyn. 87, 1675–1683 (2017)

    Article  Google Scholar 

  16. Wu, H.Y., Jiang, L.H., Wu, Y.F.: The stability of two-dimensional spatial solitons in cubic–quintic-septimal nonlinear media with different diffractions and PT-symmetric potentials. Nonlinear Dyn. 87, 1667–1674 (2017)

    Article  Google Scholar 

  17. Zhu, H.P., Pan, Z.H.: Stability of Gaussian-type light bullets in the cubic–quintic-septimal nonlinear media with different diffractions under PT-symmetric potentials. Nonlinear Dyn. 89, 1745–1752 (2017)

    Article  MathSciNet  Google Scholar 

  18. Reyna, A.S., Jorge, K.C., de Araújo, C.B.: Two-dimensional solitons in a quintic-septimal medium. Phys. Rev. A 90, 063835 (2014)

    Article  Google Scholar 

  19. Reyna, A.S., de Araújo, C.B.: Spatial phase modulation due to quintic and septic nonlinearities in metal colloids. Opt. Express 22, 22456–22469 (2014)

    Article  Google Scholar 

  20. Reyna, A.S., de Araújo, C.B.: Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity. Phys. Rev. A 89, 063803 (2014)

    Article  Google Scholar 

  21. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Article  MATH  Google Scholar 

  22. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bogatyrev, V.A., Bubnov, M.M., Dianov, E.M., et al.: A single-mode fiber with chromatic dispersion varying along the length. J. Lightwave Technol. 9, 561–566 (1991)

    Article  Google Scholar 

  24. Mamyshev, P.V., Cherinkov, S.V., Dianov, M.: Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines. IEEE J. Quantum Electron. 7, 2347–2355 (1991)

    Article  Google Scholar 

  25. Serkin, V.N., Belyaeva, T.L., Alexandrov, I.V., Melchor, G.M.: Novel topological quasi-soliton solutions for the nonlinear cubic–quintic Schrodinger equation model. Proc. SPIE Int. Soc. Opt. Eng. 4271, 292–302 (2001)

    Google Scholar 

  26. Belmonte-Beitia, J., Cuevas, J.: Solitons for the cubic–quintic nonlinear Schrodinger equation with time- and space-modulated coefficients. J. Phys. A Math. Theor. 42, 165201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Nonlinear similariton tunneling effect in the birefringent fiber. Opt. Express 18, 17548–17554 (2010)

    Article  Google Scholar 

  28. Dai, C.Q., Zhang, J.F.: Exact spatial similaritons and rogons in 2D graded-index waveguides. Opt. Lett. 35, 2651–2653 (2010)

    Article  Google Scholar 

  29. Chen, Y.X.: Sech-type and Gaussian-type light bullet solutions to the generalized (3+1)-dimensional cubic–quintic Schrödinger equation in \({\cal{P}}{\cal{T}}\)-symmetric potentials. Nonlinear Dyn. 79, 427–436 (2015)

    Article  Google Scholar 

  30. Zhu, Y., Qin, W., Li, J.T., Han, J.Z., Wang, Y.Y., Dai, C.Q.: Recurrence behavior for controllable excitation of rogue waves in a two-dimensional PT-symmetric coupler. Nonlinear Dyn. 88, 1883–1889 (2017)

    Article  Google Scholar 

  31. Li, J.T., Zhu, Y., Liu, Q.T., Han, J.Z., Wang, Y.Y., Dai, C.Q.: Vector combined and crossing Kuznetsov–Ma solitons in PT-symmetric coupled waveguides. Nonlinear Dyn. 85, 973–980 (2016)

    Article  MathSciNet  Google Scholar 

  32. Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine soliton and Kuznetsov–Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)

    Article  MathSciNet  Google Scholar 

  33. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  34. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons. J. Mod. Opt. 57, 1456–1472 (2010)

    Article  MATH  Google Scholar 

  35. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous matter-wave solitons near the Feshbach resonance. Phys. Rev. A 81, 023610 (2010)

    Article  Google Scholar 

  36. Zhang, J.F., Tian, Q., Wang, Y.Y., Dai, C.Q., Wu, L.: Self-similar optical pulses in competing cubic–quintic nonlinear media with distributed coefficients. Phys. Rev. A 81, 023832 (2010)

    Article  Google Scholar 

  37. Abramowitz, M., Stegun, I.A.: “Chapter 15”, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, p. 555. Dover, New York (1965)

    Google Scholar 

  38. Dai, C.Q., Zhou, G.Q., Zhang, J.F.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)

    Article  Google Scholar 

  39. Dai, C.Q., Zhu, H.P.: Superposed Kuznetsov–Ma solitons in a two-dimensional graded-index grating waveguide. J. Opt. Soc. Am. B 30, 3291–3297 (2013)

    Article  Google Scholar 

  40. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact self-similar solutions of the generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. Lett. 90, 113902 (2003)

    Article  Google Scholar 

  41. Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Controllable Akhmediev breather and Kuznetsov–Ma soliton trains in PT-symmetric coupled waveguides. Opt. Express 22, 29862–29867 (2014)

    Article  Google Scholar 

  42. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY17F050011) and the National Natural Science Foundation of China (Grant No. 11375007). Dr. Chao-Qing Dai is also sponsored by the Foundation of New Century “151 Talent Engineering” of Zhejiang Province of China, Open Fund of IPOC (BUPT) and Youth Top-notch Talent Development and Training Program of Zhejiang A&F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Qing Dai.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, CQ., Wang, YY., Fan, Y. et al. Reconstruction of stability for Gaussian spatial solitons in quintic–septimal nonlinear materials under \({{\varvec{\mathcal {P}}}}{\varvec{\mathcal {T}}}\)-symmetric potentials. Nonlinear Dyn 92, 1351–1358 (2018). https://doi.org/10.1007/s11071-018-4130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4130-4

Keywords

Navigation