Skip to main content

Advertisement

Log in

Resonant nonlinearities of piezoelectric macro-fiber composite cantilevers with interdigitated electrodes in energy harvesting

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We explore the modeling and analysis of nonlinear nonconservative dynamics of macro-fiber composite (MFC) piezoelectric structures, guided by rigorous experiments, for resonant vibration-based energy harvesting, as well as other applications leveraging the direct piezoelectric effect, such as resonant sensing. The MFCs employ piezoelectric fibers of rectangular cross section embedded in Kapton with interdigitated electrodes to exploit the 33-mode of piezoelectricity. Existing modeling and analysis efforts for resonant nonlinearities have so far considered conventional piezoceramics that use the 31-mode of piezoelectricity. In the present work, we develop a framework to represent and predict nonlinear electroelastic dynamics of MFC bimorph cantilevers under resonant base excitation for primary resonance behavior. The interdigitated electrodes are shunted to a set of resistive electrical loads to quantify the electrical power output. Experiments are conducted on a set of MFC bimorphs over a broad range of mechanical excitation levels to identify the types of nonlinearities present and to compare the harmonic balance model predictions and experiments. The experimentally observed interaction of quadratic piezoelectric material softening and cubic geometric hardening effects is captured and demonstrated by the model. It is shown that the linearized version of the model yields highly inaccurate results for typical base acceleration levels and frequencies involved in vibration energy harvesting, while the nonlinear framework presented here can accurately predict the amplitude-dependent resonant frequency response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hagood, N.W., Chung, W.H., von Flotow, A.: Modeling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1, 327–354 (1990)

    Article  Google Scholar 

  2. Hagood, N.W., von Flotow, A.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146(2), 243–268 (1991)

    Article  Google Scholar 

  3. Smits, J.G., Choi, W.S.: The constituent equations of piezoelectric heterogeneous bimorphs. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(3), 256–270 (1991)

    Article  Google Scholar 

  4. Dosch, J.J., Inman, D.J., Garcia, E.: A self-sensing piezoelectric actuator for collocated control. J. Intell. Mater. Syst. Struct. 3(1), 166–185 (1992)

    Article  Google Scholar 

  5. Baz, A., Ro, J.: Vibration control of plates with active constrained layer damping. Smart Mater. Struct. 5(3), 272 (1996)

    Article  Google Scholar 

  6. Leo, D.J.: Engineering Analysis of Smart Material Systems. Wiley, Hoboken (2007)

    Book  Google Scholar 

  7. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18(2), 025009 (2009)

    Article  Google Scholar 

  8. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Chichester (2011)

    Book  Google Scholar 

  9. Erturk, A.: Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput. Struct. 106, 214–227 (2012)

    Article  Google Scholar 

  10. Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2015)

    Article  Google Scholar 

  11. Leadenham, S., Erturk, A.: Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances. Smart Mater. Struct. 24(5), 055021 (2015)

    Article  Google Scholar 

  12. Yuan, T., Yang, J., Chen, L.: Experimental identification of hardening and softening nonlinearity in circular laminated plates. Int. J. Non Linear Mech. 95, 296–306 (2017)

    Article  Google Scholar 

  13. Yuan, T., Yang, J., Chen, L.: Nonlinear characteristic of a circular composite plate energy harvester: experiments and simulations. Nonlinear Dyn. 90(4), 2495–2506 (2017)

    Article  Google Scholar 

  14. Feenstra, J., Granstrom, J., Sodano, H.: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mech. Syst. Signal Process. 22(3), 721–734 (2008)

    Article  Google Scholar 

  15. Cunefare, K.A., Skow, E.A., Erturk, A., Savor, J., Verma, N., Cacan, M.R.: Energy harvesting from hydraulic pressure fluctuations. Smart Mater. Struct. 22(2), 025036 (2013)

    Article  Google Scholar 

  16. Zhao, S., Erturk, A.: Deterministic and band-limited stochastic energy harvesting from uniaxial excitation of a multilayer piezoelectric stack. Sens. Actuators A Phys. 214, 58–65 (2014)

    Article  Google Scholar 

  17. Skow, E.A., Cunefare, K.A., Erturk, A.: Power performance improvements for high pressure ripple energy harvesting. Smart Mater. Struct. 23(10), 104011 (2014)

    Article  Google Scholar 

  18. Shahab, S., Erturk, A.: Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement. Smart Mater. Struct. 23(12), 125032 (2014)

    Article  Google Scholar 

  19. Shahab, S., Gray, M., Erturk, A.: Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: modeling and experiment. J. Appl. Phys. 117(10), 104903 (2015)

    Article  Google Scholar 

  20. Bent, A.A., Hagood, N.W.: Piezoelectric fiber composites with interdigitated electrodes. J. Intell. Mater. Syst. Struct. 8(11), 903–919 (1997)

    Article  Google Scholar 

  21. Bent, A.A.: Active fiber composites for structural actuation. Thesis (1997)

  22. Bent, A.A., Hagood, N.W., Rodgers, J.P.: Anisotropic actuation with piezoelectric fiber composites. J. Intell. Mater. Syst. Struct. 6(3), 338–349 (1995)

    Article  Google Scholar 

  23. Wilkie, W.K., Bryant, R.G., High, J.W., Fox, R.L., Hellbaum, R.F., Jalink, A., Jr., Little, B.D., Mirick, P.H.: Low-cost piezocomposite actuator for structural control applications. In: SPIE’s 7th Annual International Symposium on Smart Structures and Materials, pp. 323–334. International Society for Optics and Photonics

  24. Wilkie, W.K., High, J.W.: Method of fabricating NASA-standard macro-fiber composite piezoelectric actuators, NASA/TM-2003-212427, NASA (2003)

  25. Browning, J.S.: F-16 ventral fin buffet alleviation using piezoelectric actuators. Thesis (2009)

  26. Sodano, H.A., Park, G., Inman, D.J.: An investigation into the performance of macro-fiber composites for sensing and structural vibration applications. Mechan. Syst. Signal Process. 18(3), 683–697 (2004)

    Article  Google Scholar 

  27. Erturk, A., Delporte, G.: Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms. Smart Mater. Struct. 20(12), 125013 (2011)

    Article  Google Scholar 

  28. Cen, L., Erturk, A.: Bio-inspired aquatic robotics by untethered piezohydroelastic actuation. Bioinspir. Biomim. 8(1), 016006 (2013)

    Article  Google Scholar 

  29. Collet, M., Ruzzene, M., Cunefare, K.A.: Generation of lamb waves through surface mounted macro-fiber composite transducers. Smart Mater. Struct. 20(2), 025020 (2011)

    Article  Google Scholar 

  30. Matt, H.M., di Scalea, F.L.: Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Mater. Struct. 16(4), 1489 (2007)

    Article  Google Scholar 

  31. Kim, D.K., Han, J.H.: Smart flapping wing using macrofiber composite actuators. In: Smart Structures and Materials, pp. 61730F. International Society for Optics and Photonics, Bellingham

  32. Kim, D.K., Kim, H.I., Han, J.H., Kwon, K.J.: Experimental investigation on the aerodynamic characteristics of a biomimetic flapping wing with macro-fiber composites. J. Intell. Mater. Syst. Struct. 19(3), 423–431 (2008)

    Article  Google Scholar 

  33. Bilgen, O., Kochersberger, K.B., Inman, D.J., Ohanian, O.J.: Novel, bidirectional, variable-camber airfoil via macro-fiber composite actuators. J. Aircr. 47(1), 303–314 (2010)

    Article  Google Scholar 

  34. Paradies, R., Ciresa, P.: Active wing design with integrated flight control using piezoelectric macro fiber composites. Smart Mater. Struct. 18(3), 035010 (2009)

    Article  Google Scholar 

  35. Cha, Y., Kim, H., Porfiri, M.: Energy harvesting from underwater base excitation of a piezoelectric composite beam. Smart Mater. Struct. 22(11), 115026 (2013)

    Article  Google Scholar 

  36. Shahab, S., Erturk, A.: Electrohydroelastic dynamics of macro-fiber composites for underwater energy harvesting from base excitation. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, vol. 9057, pp. 90570C. International Society for Optics and Photonics, Bellingham

  37. Shahab, S., Erturk, A.: Underwater dynamic actuation of macro-fiber composite flaps with different aspect ratios: electrohydroelastic modeling, testing, and characterization. In: ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. V002T06A007. American Society of Mechanical Engineers

  38. Shahab, S., Erturk, A.: Unified electrohydroelastic investigation of underwater energy harvesting and dynamic actuation by incorporating Morison’s equation. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, pp. 94310C. International Society for Optics and Photonics

  39. Shahab, S., Erturk, A.: Experimentally validated nonlinear electrohydroelastic Euler-Bernoulli-Morison model for macro-fiber composites with different aspect ratios. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V008T13A030. American Society of Mechanical Engineers

  40. Shahab, S., Tan, D., Erturk, A.: Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios. Eur. Phys. J. Spec. Top. 224(17–18), 3419–3434 (2015)

    Article  Google Scholar 

  41. Cha, Y., Chae, W., Kim, H., Walcott, H., Peterson, S.D., Porfiri, M.: Energy harvesting from a piezoelectric biomimetic fish tail. Renew. Energy 86, 449–458 (2016)

    Article  Google Scholar 

  42. Williams, R.B., Inman, D.J., Wilkie, W.K.: Temperature-dependent thermoelastic properties for macro fiber composite actuators. J. Therm. Stresses 27(10), 903–915 (2004)

    Article  Google Scholar 

  43. Williams, R.B., Grimsley, B.W., Inman, D.J., Wilkie, W.K.: Manufacturing and mechanics-based characterization of macro fiber composite actuators. In: ASME 2002 International Mechanical Engineering Congress and Exposition, pp. 79–89. American Society of Mechanical Engineers

  44. Williams, R.B., Inman, D.J., Schultz, M.R., Hyer, M.W., Wilkie, W.K.: Nonlinear tensile and shear behavior of macro fiber composite actuators. J. Compos. Mater. 38(10), 855–869 (2004)

    Article  Google Scholar 

  45. Deraemaeker, A., Nasser, H., Benjeddou, A., Preumont, A.: Mixing rules for the piezoelectric properties of macro fiber composites. J. Intell. Mater. Syst. Struct. 20(12), 1475–1482 (2009)

    Article  Google Scholar 

  46. Shahab, S., Erturk, A.: Coupling of experimentally validated electroelastic dynamics and mixing rules formulation for macro-fiber composite piezoelectric structures. J. Intell. Mater. Syst. Struct. 28(12), 1575–1588 (2017)

    Article  Google Scholar 

  47. Shahab, S., Erturk, A.: Electrohydroelastic Euler–Bernoulli–Morison model for underwater resonant actuation of macro-fiber composite piezoelectric cantilevers. Smart Mater. Struct. 25(10), 105007 (2016)

    Article  Google Scholar 

  48. Goldschmidtboeing, F., Eichhorn, C., Wischke, M., Kroener, M., Woias, P.: The influence of ferroelastic hysteresis on mechanically excited PZT cantilever beams. In: Proceedings of the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, pp. 114–117

  49. Agarwal, B .D., Broutman, L .J., Chandrashekhara, K.: Analysis and Performance of Fiber Composites. Wiley, Hoboken (2006)

    Google Scholar 

  50. Crespo da Silva, M .R .M., Glynn, C .C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. i. equations of motion. J. Struct. Mech. 6(4), 437–448 (1978)

    Article  Google Scholar 

  51. Malatkar, P.: Nonlinear vibrations of cantilever beams and plates. Thesis (2003)

  52. Tan, D., Erturk, A.: In vacuo elastodynamics of a flexible cantilever for wideband energy harvesting. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, Bellingham

  53. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF Grant CMMI-1254262, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Erturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Yavarow, P. & Erturk, A. Resonant nonlinearities of piezoelectric macro-fiber composite cantilevers with interdigitated electrodes in energy harvesting. Nonlinear Dyn 92, 1935–1945 (2018). https://doi.org/10.1007/s11071-018-4172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4172-7

Keywords

Navigation