Skip to main content
Log in

A novel chaotic Jaya algorithm for unconstrained numerical optimization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Jaya algorithm is one of the recent algorithms developed to solve optimization problems. The basic concept of this algorithm consists in moving the obtained solution, for a given problem, toward the best solution and avoiding the worst one. However, it severely suffers from premature convergence problem and therefore can be easily trapped in local optimums. This study aimed to alleviate these drawbacks and improve the performance of the original Jaya algorithm. Here, three new mutation strategies were implemented in the original Jaya to improve both its global and local search abilities. Chaotic maps were proved to be able to boost the search capabilities of meta-heuristic algorithms. Therefore, after demonstrating its chaotic behavior through the sensitivity to initial conditions, topological transitivity and the density of periodic points, we proposed a new 2D cross chaotic map. The chaotic sequences provided by the proposed chaotic map were embedded into the original Jaya algorithm to generate the initial population and control the search equations. It is worth mentioning that the modifications incorporated in the original algorithm did not affect its two essential characteristics, i.e., simplicity and nonrequirement of additional control parameters. As case studies, sixteen benchmark functions were used to evaluate the performance of the proposed chaotic Jaya algorithm (C-Jaya) regarding solution accuracy and convergence speed. Comparisons with some other meta-heuristic algorithms for low-, middle- and high-dimensional benchmark functions show that the proposed C-Jaya algorithm enhances the performance of original Jaya significantly. Moreover, it offers the fastest global convergence, the highest solution quality and it is the most robust on almost all the test functions among all the algorithms. Nonparametric statistical procedures, i.e., Friedman test, Friedman aligned ranks test and Quade test, conducted to analyze the obtained results, show the superiority of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abhishek, K., Kumar, V.R., Datta, S., Mahapatra, S.S.: Application of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICA. Eng. Comput. 33, 1–19 (2016)

    Google Scholar 

  2. Ahrari, A., Atai, A.: Grenade explosion method—a novel tool for optimization of multimodal functions. Appl. Soft Comput. 10(4), 1132–1140 (2010)

    Article  Google Scholar 

  3. Alatas, B.: Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 37(8), 5682–5687 (2010)

    Article  Google Scholar 

  4. Alatas, B.: Chaotic harmony search algorithms. Appl. Math. Comput. 216(9), 2687–2699 (2010)

    MATH  Google Scholar 

  5. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)

    Article  Google Scholar 

  6. Ali, M.Z., Awad, N.H., Suganthan, P.N., Duwairi, R.M., Reynolds, R.G.: A novel hybrid Cultural Algorithms framework with trajectory-based search for global numerical optimization. Inf. Sci. 334, 219–249 (2016)

    Article  Google Scholar 

  7. Awad, N.H., Ali, M.Z., Suganthan, P.N., Reynolds, R.G.: CADE: a hybridization of cultural algorithm and differential evolution for numerical optimization. Inf. Sci. 378, 215–241 (2017)

    Article  Google Scholar 

  8. Bai, Y.-Y., Xiao, S., Liu, C., Wang, B.-Z.: A hybrid IWO/PSO algorithm for pattern synthesis of conformal phased arrays. IEEE Trans. Antennas Propag. 61(4), 2328–2332 (2013)

    Article  Google Scholar 

  9. Chen, J., Xin, B., Peng, Z., Dou, L., Zhang, J.: Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(3), 680–691 (2009)

    Article  Google Scholar 

  10. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  11. Derrac, J., García, S., Hui, S., Suganthan, P.N., Herrera, F.: Analyzing convergence performance of evolutionary algorithms: a statistical approach. Inf. Sci. 289, 41–58 (2014)

    Article  Google Scholar 

  12. Devaney, R.: An Introduction To Chaotic Dynamical Systems. Westview Press, Boulder (2008)

    Google Scholar 

  13. Dong, H., Song, B., Wang, P., Huang, S.: A kind of balance between exploitation and exploration on kriging for global optimization of expensive functions. J. Mech. Sci. Technol. 29(5), 2121–2133 (2015)

    Article  Google Scholar 

  14. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99, vol. 2, pp. 1470–1477. IEEE (1999)

  15. Eusuff, M., Lansey, K., Pasha, F.: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38(2), 129–154 (2006)

    Article  MathSciNet  Google Scholar 

  16. Farah, A., Guesmi, T., Abdallah, H.H., Ouali, A.: A novel chaotic teaching-learning-based optimization algorithm for multi-machine power system stabilizers design problem. Int. J. Electr. Power Energy Syst. 77, 197–209 (2016)

    Article  Google Scholar 

  17. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Phys. D 22(1–3), 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  18. Gandomi, A.H., Yang, X.-S.: Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014)

    Article  MathSciNet  Google Scholar 

  19. Gandomi, A.H., Yang, X.-S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, S., Vairappan, C., Wang, Y., Cao, Q., Tang, Z.: Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl. Math. Comput. 231, 48–62 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Ghasemi, M., Ghavidel, S., Rahmani, S., Roosta, A., Falah, H.: A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions. Eng. Appl. Artif. Intell. 29, 54–69 (2014)

    Article  Google Scholar 

  22. Gokhale, S.S., Kale, V.S.: An application of a tent map initiated chaotic firefly algorithm for optimal overcurrent relay coordination. Int. J. Electr. Power Energy Syst. 78, 336–342 (2016)

    Article  Google Scholar 

  23. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  24. Hong, W.-C.: Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74(12), 2096–2107 (2011)

    Article  Google Scholar 

  25. Huang, L., Ding, S., Shouhao, Y., Wang, J., Ke, L.: Chaos-enhanced Cuckoo search optimization algorithms for global optimization. Appl. Math. Model. 40(5), 3860–3875 (2016)

    Article  MathSciNet  Google Scholar 

  26. Ji, X., Ye, H., Zhou, J., Yin, Y., Shen, X.: An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry. Appl. Soft Comput. 57, 504–516 (2017)

    Article  Google Scholar 

  27. Jia, D., Zheng, G., Khan, M.K.: An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187 (2011)

    Article  Google Scholar 

  28. Joorabian, M., Afzalan, E.: Optimal power flow under both normal and contingent operation conditions using the hybrid fuzzy particle swarm optimisation and Nelder-Mead algorithm (HFPSO-NM). Appl. Soft Comput. 14, 623–633 (2014)

    Article  Google Scholar 

  29. Jordehi, A.R.: Chaotic bat swarm optimisation (CBSO). Appl. Soft Comput. 26, 523–530 (2015)

    Article  Google Scholar 

  30. Jordehi, A.R.: A chaotic-based big bang-big crunch algorithm for solving global optimisation problems. Neural Comput. Appl. 25(6), 1329–1335 (2014)

    Article  Google Scholar 

  31. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  32. Kennedy, J.: Particle Swarm Optimization, pp. 760–766. Springer, Boston (2010)

    Google Scholar 

  33. Kocarev, L., Tasev, Z.: Public-key encryption based on Chebyshev maps. In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03, vol. 3, pp. III–28–III–31. IEEE (2003)

  34. Li, B., Wei-Sun, J.: Optimizing complex functions by chaos search. Cybern. Syst. 29(4), 409–419 (1998)

    Article  MATH  Google Scholar 

  35. Lin, L., Gen, M.: Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft. Comput. 13(2), 157–168 (2009)

    Article  MATH  Google Scholar 

  36. Liu, Z., Blasch, E., John, V.: Statistical comparison of image fusion algorithms: recommendations. Inf. Fusion 36, 251–260 (2017)

    Article  Google Scholar 

  37. Ma, Z.S.: Chaotic populations in genetic algorithms. Appl. Soft Comput. 12(8), 2409–2424 (2012)

    Article  Google Scholar 

  38. Majumdar, M., Mitra, T., Nishimura, K.: Optimization and Chaos, vol. 11. Springer, New York (2000)

    MATH  Google Scholar 

  39. Mingjun, J., Huanwen, T.: Application of chaos in simulated annealing. Chaos Solitons Fractal 21(4), 933–941 (2004)

    Article  MATH  Google Scholar 

  40. Mirjalili, S., Gandomi, A.H.: Chaotic gravitational constants for the gravitational search algorithm. Appl. Soft Comput. 53, 407–419 (2017)

    Article  Google Scholar 

  41. Mirjalili, S., Lewis, A.: The Whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  42. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  43. Peng, C., Sun, H., Guo, J., Liu, G.: Dynamic economic dispatch for wind-thermal power system using a novel bi-population chaotic differential evolution algorithm. Int. J. Electr. Power Energy Syst. 42(1), 119–126 (2012)

    Article  Google Scholar 

  44. Rao, R.: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)

    MathSciNet  Google Scholar 

  45. Rao, R.V., More, K.C.: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm. Energy Convers. Manage. 140, 24–35 (2017)

    Article  Google Scholar 

  46. Rao, R.V., Saroj, A.: Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm. Energy 128, 785–800 (2017)

    Article  Google Scholar 

  47. Rao, R.V., Waghmare, G.G.: A new optimization algorithm for solving complex constrained design optimization problems. Eng. Optim. 49(1), 60–83 (2017)

    Article  Google Scholar 

  48. Rao, V.R., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  49. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  50. Rao, R.V., More, K.C., Taler, J., Ocłoń, P.: Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Appl. Therm. Eng. 103, 572–582 (2016)

    Article  Google Scholar 

  51. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  52. Saremi, S., Mirjalili, S.: Integrating chaos to biogeography-based optimization algorithm. Int. J. Comput. Commun. Eng. 2(6), 655 (2013)

    Article  Google Scholar 

  53. Saremi, S., Mirjalili, S., Lewis, A.: Biogeography-based optimisation with chaos. Neural Comput. Appl. 25(5), 1077–1097 (2014)

    Article  Google Scholar 

  54. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  55. Singh, P.S., Prakash, T., Singh, V.P., Babu, M.G.: Analytic hierarchy process based automatic generation control of multi-area interconnected power system using Jaya algorithm. Eng. Appl. Artif. Intell. 60, 35–44 (2017)

    Article  Google Scholar 

  56. Sun, L., Hong, L.J., Hu, Z.: Balancing exploitation and exploration in discrete optimization via simulation through a gaussian process-based search. Oper. Res. 62(6), 1416–1438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Talatahari, S., Farahmand Azar, B., Sheikholeslami, R., Gandomi, A.H., Gandomi, A.H.: Imperialist competitive algorithm combined with chaos for global optimization. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1312–1319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197(2), 701–713 (2009)

    Article  MATH  Google Scholar 

  59. Wang, X., Duan, H.: A hybrid biogeography-based optimization algorithm for job shop scheduling problem. Comput. Ind. Eng. 73, 96–114 (2014)

    Article  Google Scholar 

  60. Wang, S., Rao, R.V., Chen, P., Zhang, Y., Liu, A., Wei, L.: Abnormal breast detection in mammogram images by feed-forward neural network trained by jaya algorithm. Fundam. Inf. 151(1–4), 191–211 (2017)

    Article  MathSciNet  Google Scholar 

  61. Yan, X.F., Chen, D.Z., Hu, S.X.: Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model. Comput. Chem. Eng. 27(10), 1393–1404 (2003)

    Article  Google Scholar 

  62. Yang, D., Liu, Z., Zhou, J.: Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1229–1246 (2014)

    Article  MathSciNet  Google Scholar 

  63. Yuan, X., Zhao, J., Yang, Y., Wang, Y.: Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl. Soft Comput. 17, 12–22 (2014)

    Article  Google Scholar 

  64. Zhou, N., Zhang, A., Zheng, F., Gong, L.: Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt. Laser Technol. 62, 152–160 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Belazi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix A: The proof of chaos for G(x)

Appendix A: The proof of chaos for G(x)

Definition 1

(Discrete chaos of Devaney) Consider a discrete dynamical system in the following form:

$$\begin{aligned} y_{i+1}=g(y_i),\quad g: J\rightarrow J,\quad y_0\in J \end{aligned}$$
(6)

g(x) is chaotic if the following conditions are satisfied [12].

  1. (1)

    Sensitive to initial conditions

    $$\begin{aligned}&\exists ~ \Omega>0,\quad \forall ~ y_0\in J,\quad \omega>0,\quad \exists ~ n\in N,\quad z_0\in J \nonumber \\&\left| y_0-z_0\right| <\omega \Rightarrow \left| g^n(y_0)-g^n(z_0)\right| >\Omega . \end{aligned}$$
    (7)
  2. (2)

    Topological transitivity

    $$\begin{aligned} \forall ~ J_1,\,\, J_2\in J,\quad \exists ~ y_0\in J_1,\quad n\in N,\quad g^n(y_0)\in J_2. \end{aligned}$$
    (8)
  3. (3)

    Density of periodic points in J Let \(K=\{k\in J|\exists n\in N:\,\, g^n(k)=k\}\) be the set of periodic points of g. Therefore, K is dense in \(J:\overline{K}=J\).

Definition 2

Let \(f: I\rightarrow I\) and \(g: J\rightarrow J\) be maps. f and g are topologically conjugated if there exists a homeomorphism \(h: I\rightarrow J\) that makes \(h\circ f=g\circ h\).

Theorem

Let \(f:I\rightarrow I\) and \(g: J\rightarrow J\) be conjugate via h. If f is chaotic on I, then g is chaotic on J.

Proof

  1. (1)

    (Sensitive to initial conditions) Let f have sensitivity constant \(\alpha \). Let \(I=\left[ \omega _0,\omega _1\right] \). Assume \(\alpha <\omega _1-\omega _0\). Consider the function \(|h(x+\alpha )-h(x)|\) where \(x\in \left[ \omega _0,\omega _1-\alpha \right] \). This function has minimum value \(\lambda \) as it is continuous and positive. So, h maps intervals of length \(\alpha \) to intervals of length at least \(\lambda \). We assume that g has sensitivity constant \(\lambda \). Let \(x_0\in J\) and B be an open interval about \(x_0\). Therefore, \(h^{-1}(B)\) is an open interval about \(h^{-1}(x_0)\). By sensitive to initial conditions, there is \(y_0\in h^{-1}(B)\) and \(m>0\) which satisfy \(\left| f^m\left( h^{-1}(x_0)\right) -f^m(y_0)\right| >\alpha \). Then,

    $$\begin{aligned}&\left| h\left( f^m\left( h^{-1}(x_0)\right) \right) -h\left( f^m(y_0)\right) \right| \\&\quad =\left| g^m(x_0)-g^m\left( h(y_0)\right) \right| >\lambda . \end{aligned}$$
  2. (2)

    (Topological transitivity) Let A and B be open subintervals of J. So, \(h^{-1}(A)\) and \(h^{-1}(B)\) are open subintervals of I (h is a continuous function). As f is topologically transitive, there is \(x_0\in h^{-1}(A)\) that fulfills \(f^n(x_0)\in h^{-1}(B)\) for some n. Therefore, \(h(x_0)\in A\) and \(g^n\left( h(x_0)\right) =h\left( f^n(x_0)\right) \in B\).

  3. (3)

    (Density of periodic points) Let A be an open subinterval of J and consider \(h^{-1}(A)\subset I\). Since periodic points of f are dense in I, there is a periodic point \(x\in h^{-1}(A)\) of period m. We have \(g\circ h=h\circ f\), so \(g^m\left( h(x)\right) =h\left( f^m(x)\right) =h(x)\). Therefore, h(x) is a periodic point of period m in A and periodic points are dense in J. According to the definition of chaos Devaney [12], g is chaotic on J.

\(\square \)

It is known that \(\phi (\theta )=5\theta \) is chaotic [12] under the unit circle mapping \(S^1\rightarrow S^1\), so \(\phi \) is sensitive to initial value, topologically transitive and dense in \(S^1\).

Considering \(h(\theta )=\cos \theta \), we have \(G\circ h=16\cos ^5\theta -20\cos ^3\theta +5\cos \theta =\cos (5\theta )=h\circ \phi \). So G is conjugated to \(\phi \) in \(y\in J=\left[ -1,1\right] \). Thus, as \(\phi \) is chaotic on \(S^1\), then G is chaotic on \(J=\left[ -1,1\right] \).

1.1 The randomness proof of G(x)

Because function \(G(x)=16x^5-20x^3+5x\) is a Chebyshev polynomial of degree 5 \((T_5(x)=\cos (5\theta ), x=\cos \theta )\), so its invariant density is

$$\begin{aligned} \rho _G(x)=\frac{1}{\pi \sqrt{1-x^2}},\quad -1<x<1 \end{aligned}$$
(9)

1.1.1 The auto-correlation proof

It is known that

$$\begin{aligned} \bar{x}&=\int _{-1}^{1}x\rho _G(x)\mathrm{d}x\\&\overset{x=\sin u}{=}\int _{\frac{-\pi }{2}}^{\frac{\pi }{2}}\sin u\frac{1}{\sqrt{1-\sin ^2 u}}\cos u \mathrm{d}u=0. \end{aligned}$$

Considering \(x=\cos u\) and \(\tau \) is the iterative times of G(x). We have \(G^\tau (x)=\cos (5^\tau u)\). When \(\tau \ne 0\),

$$\begin{aligned} \begin{aligned} C_G(\tau )&= \int _{-1}^{1}x\rho _G(x)G^\tau (x)\mathrm{d}x-\bar{x}^2 \\&= \int _{-1}^{1}x\frac{1}{\pi \sqrt{1-x^2}}G^\tau (x)\mathrm{d}x-\bar{x}^2=0. \end{aligned} \end{aligned}$$

When \(\tau =0\),

$$\begin{aligned} \begin{aligned} C_G(0) =&\int _{-1}^{1}x\rho _G(x)G^0(x)\mathrm{d}x-\bar{x}^2 \\ =&\int _{-1}^{1}x^2\frac{1}{\pi \sqrt{1-x^2}}\mathrm{d}x-\bar{x}^2\\ \overset{x=\cos u}{=}&\int _{\pi }^{0}\cos ^2u\frac{1}{\pi \sqrt{1-\cos ^2u}}\\&\times (-\sin u) \mathrm{d}u\\ =&\frac{1}{\pi }\int _{0}^{\pi }\frac{1+\cos (2u)}{2}\mathrm{d}u=0.5. \end{aligned} \end{aligned}$$

Therefore, auto-correlation function of G(x) is:

$$\begin{aligned} C_G(\tau )={\left\{ \begin{array}{ll} 0.5 &{} \quad \text {if } \tau =0\\ 0 &{} \quad \text {if } \tau \ne 0\\ \end{array}\right. } \end{aligned}$$
(10)

The auto-correlation function of G(x) shows that when the iterative times \(\tau \ne 0\), the time sequences generated by G(x) are independent.

1.1.2 The cross-correlation proof

Considering \(x=\cos u\) and \(\tau \) is the iterative times of G(x). We have \(G^\tau (x)=\cos (5^\tau u)\).

Therefore, the cross-correlation function is given by

$$\begin{aligned} rr_G(\tau )=0 \end{aligned}$$
(11)

The result given in Eq. (11) shows that time sequences produced by G(x) with different initial values have no relation to each other at any time. According to the above characteristics, the average value of G(x) and the cross-correlation are 0, so the probability statistical characteristic is the same as the white noise and thus G(x) function can be used as an ideal chaotic sequence generator.

1.2 The proof of the equal probability of the pseudo-random sequence

When G(x) is iterated, a chaotic sequence is produced as follows: \(g_0,g_1,\ldots ,g_p=G(x_{p-1})\) where p is an integer. The chaotic range \(V=\left[ -1,1\right] \) is divided into M subdomains \(v_i\), \(i=0,1,2,\ldots ,M-1\). With \(v_i=(t_i,t_{i+1})\) for \(i=0,1,\ldots ,M-1\). Here, \(t_i\) is defined by Eq. (12)

$$\begin{aligned} t_i=-\cos \left( \frac{i}{M}\pi \right) , \quad i=0,1,2,\ldots ,M-1 \end{aligned}$$
(12)

The initial conditions \((x_0,y_0)\) of the cross chaotic map are used to generate a value of chaotic sequence \(\left\{ g_p\right\} _{p=1}^{\infty }\).

Definition 3

Mapping \(S:V\rightarrow {0,1,\ldots ,M-1}\), \(x_p\rightarrow i=s_k\), \(x_p\in v_i\), \(p=0,1,\ldots \), where \(s_p\) is described as Eq. (13), so the N phase pseudo-random sequence \(\left\{ s_p\right\} _{p=0}^{\infty }\) distributes in the N subdomains proportionally.

$$\begin{aligned} s_p={\left\{ \begin{array}{ll} \left\lfloor (1-\arccos (g_p)/\pi )\times M\right\rfloor , &{} \text {if} g_p\in \left[ -1,1\right] ,\\ M-1, &{} \text {if } g_p=1\\ \end{array}\right. } \end{aligned}$$
(13)

Proof

According to Eqs. (9) and (13), the probability of element i appearing in \(\left\{ s_p\right\} _{p=0}^{\infty }\) is:

$$\begin{aligned} Prob(i)=\int _{t_i}^{t_{i+1}} \rho (x)dx=\frac{1}{M} \end{aligned}$$

\(\square \)

Obviously \(\left\{ s_p\right\} _{p=0}^{\infty }\) obeys uniform distribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farah, A., Belazi, A. A novel chaotic Jaya algorithm for unconstrained numerical optimization. Nonlinear Dyn 93, 1451–1480 (2018). https://doi.org/10.1007/s11071-018-4271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4271-5

Keywords

Navigation