Skip to main content
Log in

Overview of dynamic modelling and analysis of rolling element bearings with localized and distributed faults

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Rolling element bearings (REBs) play a most critical role in various industrial machinery. A clearly and in-depth understanding of vibration characteristics of REBs is very helpful for condition monitoring and diagnosis applications for the machinery. This work presented a comprehensive review of dynamic modelling and analysis methods for predicting the vibration characteristics of REBs with and without localized and distributed faults. Main capabilities and limitations of those methods for both the localized and distributed faults have been described. Explanations for the generations of the bearing vibrations were also reviewed. A summary of the literature was given followed by the recommendations of current and future research works. Moreover, recent challenges, directions and implications in research works on the dynamic modelling and analysis methods of the localized and distributed faults in REBs have also been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Tandon, N., Nakra, B.C.: Vibration and acoustic monitoring techniques for the detection of defects in rolling element bearings: a review. Shock Vib. Dig. 24(3), 3–11 (1992)

    Article  Google Scholar 

  2. Kim, P.Y., Lowe, I.R.G.: A review of rolling element bearing health monitoring. In: Proceedings of Machinery Vibration Monitoring and Analysis Meeting, Vibration Institute, Houston, TX, 19–21 April, pp. 145–154 (1983)

  3. Mathew, J., Alfredson, R.J.: The condition monitoring of rolling element bearings using vibration analysis. J. Vib. Acoust. Stress Reliab. Des. 106(3), 447–453 (1984)

    Article  Google Scholar 

  4. McFadden, P.D., Smith, J.D.: Vibration monitoring of rolling element bearings by the high-frequency resonance technique: a review. Tribol. Int. 17(1), 3–10 (1984)

    Article  Google Scholar 

  5. Kim, P.Y.I.: A review of rolling element bearing health monitoring: preliminary test results on current technologies. II. In: Proceedings of Machinery Vibration Monitoring and Analysis Meeting, Vibration Institute, New Orleans, LA, 26–28 June, pp. 127–137 (1988)

  6. Kim, P.Y.: A review of rolling element bearing health monitoring (III): preliminary test results on eddy current proximity transducer technique. In: Proceedings of 3rd International Conference on Vibration in Rotating Machinery, York, UK, 11–13 September, pp. 119–125 (1984)

  7. Houser, D.R., Drosjack, M.J.: Vibration signal analysis techniques. In: Technical Report, U. S. Army Air Mobility Research and Development Laboratory (1973)

  8. Collacott, R.A.: Vibration Monitoring and Diagnosis, Techniques for Cost-Effective Plant Maintenance. Halsted Press, Wiley, New York (1979)

    Google Scholar 

  9. Roger, L.M.: The application of vibration analysis and acoustic emission source location to on-line condition monitoring of anti-friction bearings. Tribol. Int. 12(2), 51–58 (1979)

    Article  Google Scholar 

  10. Yu, W., Mechefske, C.K., Timusk, M.: The dynamic coupling behavior of a cylindrical geared rotor system subjected to gear eccentricities. Mech. Mach. Theory 107, 105–122 (2017)

    Article  Google Scholar 

  11. Yu, W., Mechefske, C.K., Timusk, M.: Effects of tooth plastic inclination deformation due to spatial cracks on the dynamic features of a gear system. Nonlinear Dyn. 87, 2643–2659 (2017)

    Article  Google Scholar 

  12. Swansson, N.S., Favaloro, S.C.: Applications of vibration analysis to the condition monitoring of rolling element bearings. In: Technical Report ARL-AERO-PROP-R-163, p. 1984. Defence Science and Technology Organisation, Australia, January (1984)

  13. Choudhury, A., Tandon, N.: Application of acoustic emission technique for the detection of defects in rolling element bearings. Tribol. Int. 33(1), 39–45 (2000)

    Article  Google Scholar 

  14. Antoni, J.: The spectral kurtosis: a useful tool for characterising non-stationary signals. Mech. Syst. Signal Process. 20(2), 282–307 (2006)

    Article  Google Scholar 

  15. Antoni, J., Randall, R.B.: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 20(2), 308–331 (2006)

    Article  Google Scholar 

  16. Antoni, J.: Fast computation of the kurtogram for the detection of transient faults. Mech. Syst. Signal Process. 21(1), 108–124 (2007)

    Article  Google Scholar 

  17. Mba, D., Rao, R.B.: Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines; bearings, pumps, gearboxes, engines and rotating structures. Shock Vib. Dig. 38(1), 3–16 (2006)

    Article  Google Scholar 

  18. Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Article  Google Scholar 

  19. Randall, R.B., Antoni, J.: Rolling element bearing diagnostics: a tutorial. Mech. Syst. Signal Process. 25(2), 485–520 (2011)

    Article  Google Scholar 

  20. Randall, R.B.: Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications. Wiley, Hoboken (2011)

    Book  Google Scholar 

  21. Ma, H., Song, R., Pang, X., Wen, B.: Time-varying mesh stiffness calculation of cracked spur gears. Eng. Fail. Anal. 44, 179–194 (2014)

    Article  Google Scholar 

  22. Ma, H., Zeng, J., Feng, R., Pang, X., Wang, Q., Wen, B.: Review on dynamics of cracked gear systems. Eng. Fail. Anal. 55, 224–245 (2015)

    Article  Google Scholar 

  23. Ma, H., Pang, X., Feng, R., Song, R., Wen, B.: Fault features analysis of cracked gear considering the effects of the extended tooth contact. Eng. Fail. Anal. 48, 105–120 (2015)

    Article  Google Scholar 

  24. Wu, W., Hu, C., Hu, J., Yuan, S.: Jet cooling for rolling bearings: flow visualization and temperature distribution. Appl. Therm. Eng. 105, 217–224 (2016)

    Article  Google Scholar 

  25. Tandon, N., Choudhury, A.K.: A review of vibration and acoustic and acoustic measurement methods for the detection of defects in rolling element bearing. Tribol. Int. 32(8), 469–480 (1999)

    Article  Google Scholar 

  26. Elthalji, I., Jantunen, E.: A summary of fault modelling and predictive health monitoring of rolling element bearings. Mech. Syst. Signal Process. 60–61, 252–272 (2015)

    Article  Google Scholar 

  27. Singh, S., Howard, C.Q., Hansen, C.H.: An extensive review of vibration modelling of rolling element bearings with localised and extended defects. J. Sound Vib. 357, 300–330 (2015)

    Article  Google Scholar 

  28. Cao, H., Niu, L., Xi, S., Chen, X.: Mechanical model development of rolling bearing-rotor systems: a review. Mech. Syst. Signal Process. 102, 37–58 (2018)

    Article  Google Scholar 

  29. Rubini, R., Meneghetti, U.: Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech. Syst. Signal Process. 15(2), 287–302 (2001)

    Article  Google Scholar 

  30. Bell, R.N., Mcwilliams, D.W., Odonnell, P., Singh, C., Wells, S.J.: Report of large motor reliability survey of industrial and commercial installations. I. IEEE Trans. Ind. Appl. 21(4), 853–864 (1985)

    Google Scholar 

  31. Bell, R.N., Heising, C.R., Odonnell, P., Singh, C., Wells, S.J.: Report of large motor reliability survey of industrial and commercial installations. II. IEEE Trans. Ind. Appl. 21(4), 865–872 (1985)

    Google Scholar 

  32. O’Donnell, P., Heising, C., Singh, C., Wells, S.: Report of large motor reliability survey of industrial and commercial installations. III. IEEE Trans. Ind. Appl. 23(1), 153–158 (1987)

    Google Scholar 

  33. Albrecht, P.F., Appiarius, J.C., McCoy, R.M., Owen, E.L., Sharma, D.K.: Assessment of the reliability of motors in utility applications: updated. IEEE Trans. Energy Convers. 1, 39–46 (1986)

    Article  Google Scholar 

  34. Zhang, P., Du, Y., Habetler, T.G., Lu, B.: A survey of condition monitoring and protection methods for medium-voltage induction motors. IEEE Trans. Ind. Appl. 47(1), 34–46 (2011)

    Article  Google Scholar 

  35. Seinsch, H.O.: Monitoring und diagnose elektrischer maschinen und antriebe. In: Proceedings VDE Workshop, Allianz Schadensstatistik an HS Motoren, 1996–1999. VDE (2001, June)

  36. Lou, B., Han, L., Lu, Z., Liu, S., Shen, F.: The rolling contact fatigue behaviors in carburized and hardened steel. In: Kitagawa, H., Tanaka, T. (eds.) Fatigue 90: Proceedings of the Fourth International Conference on Fatigue and Fatigue Thresholds, pp. 627–632. Honolulu, HI (1990, July)

  37. Saheta, V.: Dynamics of Rolling Element Bearings Using Discrete Element Method. M.S. Thesis, Purdue University, West Lafayette (2001)

  38. Ghaisas, N.S., Wassgren, C., Sadeghi, F.: Cage instabilities in cylindrical roller bearings. J. Tribol. 126(4), 681–689 (2004)

    Article  Google Scholar 

  39. Raje, N., Sadeghi, F., Rateick, R.G., Hoeprich, M.R.: A numerical model for life scatter in rolling element bearings. J. Tribol. 130(1), 011011 (2008)

    Article  Google Scholar 

  40. Raje, N., Sadeghi, F., Rateick, R.G.: A statistical damage mechanics model for subsurface initiated spalling in rolling contacts. J. Tribol. 130(4), 042201 (2008)

    Article  Google Scholar 

  41. Jalalahmadi, B., Sadeghi, F.: A Voronoi FE fatigue damage model for life scatter in rolling contacts. J. Tribol. 132(2), 021404 (2010)

    Article  Google Scholar 

  42. Slack, T., Sadeghi, F.: Explicit finite element modeling of subsurface initiated spalling in rolling contacts. Tribol. Int. 43(9), 1693–1702 (2010)

    Article  Google Scholar 

  43. Warhadpande, A., Sadeghi, F., Kotzalas, M.N., Doll, G.: Effects of plasticity on subsurface initiated spalling in rolling contact fatigue. Int. J. Fatigue 36(1), 80–95 (2012)

    Article  Google Scholar 

  44. Weinzapfel, N., Sadeghi, F., Bakolas, V., Liebel, A.: A 3D finite element study of fatigue life dispersion in rolling line contacts. J. Tribol. 133(4), 042202 (2011)

    Article  Google Scholar 

  45. Weinzapfel, N., Sadeghi, F., Bakolas, V.: An approach for modeling material grain structure in investigations of Hertzian subsurface stresses and rolling contact fatigue. J. Tribol. 132(4), 041404 (2010)

    Article  Google Scholar 

  46. Weinzapfel, N., Sadeghi, F.: Numerical modeling of sub-surface initiated spalling in rolling contacts. Tribol. Int. 59, 210–221 (2013)

    Article  Google Scholar 

  47. Ren, Z., Glodez, S., Fajdiga, G., Ulbin, M.: Surface initiated crack growth simulation in moving lubricated contact. Theoret. Appl. Fract. Mech. 38(2), 141–149 (2002)

    Article  Google Scholar 

  48. Yoshioka, T., Fujiwara, T.: Measurement of propagation initiation and propagation time of rolling contact fatigue cracks by observation of acoustic. Tribol. Ser. 12, 29–33 (1987)

    Article  Google Scholar 

  49. Yoshioka, T.: Detection of rolling contact sub-surface fatigue cracks using acoustic emission technique. Lubr. Eng. 49(4), 303–308 (1993)

    Google Scholar 

  50. Mano, H., Yoshioka, T., Korenaga, A., Yamamoto, T.: Relationship between growth of rolling contact fatigue cracks and load distribution. Tribol. Trans. 43(3), 367–376 (2000)

    Article  Google Scholar 

  51. Schwach, D.W., Guo, Y.B.: A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int. J. Fatigue 28(12), 1838–1844 (2006)

    Article  Google Scholar 

  52. Elforjani, M., Mba, D.: Assessment of natural crack initiation and its propagation in slow speed bearings. Nondestruct. Test. Eval. 24(3), 261–275 (2009)

    Article  Google Scholar 

  53. Eftekharnejad, B., Carrasco, M.R., Charnley, B., Mba, D.: The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing. Mech. Syst. Signal Process. 25(1), 266–284 (2011)

    Article  Google Scholar 

  54. Zhang, Z.Q., Li, G.L., Wang, H.D., Xu, B.S., Piao, Z.Y., Zhu, L.N.: Investigation of rolling contact fatigue damage process of the coating by acoustics emission and vibration signals. Tribol. Int. 47, 25–31 (2012)

    Article  Google Scholar 

  55. Zhao, P., Hadfield, M., Wang, Y.G., Vieillard, C.: Subsurface propagation of partial ring cracks under rolling contact. Part I. Exp. Stud. Wear 261(3), 382–389 (2006)

    Article  Google Scholar 

  56. Zhao, P., Hadfield, M., Wang, Y.G., Vieillard, C.: Subsurface propagation of partial ring cracks under rolling contact. Part II. Fract. Mech. Anal. Wear 261(3), 390–397 (2006)

    Google Scholar 

  57. Glodež, S., Potocnik, R., Flasker, J., Zafosnik, B.: Numerical modelling of crack path in the lubricated rolling-sliding contact problems. Eng. Fract. Mech. 75(3), 880–891 (2008)

    Article  Google Scholar 

  58. Kadin, Y., Rychahivskyy, A.V.: Modeling of surface cracks in rolling contact. Mater. Sci. Eng. A 541, 143–151 (2012)

    Article  Google Scholar 

  59. Wen, J.S., Ju, W.E., Han, T.K., Choi, S.T., Lee, K.S.: Finite element analysis of a subsurface penny-shaped crack with crack-face contact and friction under a moving compressive load. J. Mech. Sci. Technol. 26(9), 2719–2726 (2012)

    Article  Google Scholar 

  60. Potočnik, R., Flašker, J., Glodež, S.: Numerical analysis of 3D subsurface crack propagation in large slewing bearing. Princ. Pract. Constr. Program. 2009, 1033–1040 (2013)

    Google Scholar 

  61. Deng, S., Han, X., Qin, X., Huang, S.: Subsurface crack propagation under rolling contact fatigue in bearing ring. Sci. China Technol. Sci. 56(10), 2422–2432 (2013)

    Article  Google Scholar 

  62. Deng, S., Qin, X., Huang, S.: A study on the effect of subsurface crack propagation on rolling contact fatigue in a bearing ring. J. Mech. Sci. Technol. 29(3), 1029–1038 (2015)

    Article  Google Scholar 

  63. Bomidi, J.A., Sadeghi, F.: Three-dimensional finite element elastic–plastic model for subsurface initiated spalling in rolling contacts. J. Tribol. 136(1), 011402 (2014)

    Article  Google Scholar 

  64. Paulson, N.R., Evans, N.E., Bomidi, J.A., Sadeghi, F., Evans, R.D., Mistry, K.K.: A finite element model for rolling contact fatigue of refurbished bearings. Tribol. Int. 85, 1–9 (2015)

    Article  Google Scholar 

  65. Walvekar, A.A., Paulson, N., Sadeghi, F., Weinzapfel, N., Correns, M., Dinkel, M.: A new approach for fatigue damage modeling of subsurface initiated spalling in large rolling contacts. J. Tribol. 139, 011101 (2017)

    Article  Google Scholar 

  66. Liu, J., Shi, Z.F., Shao, Y.M.: An investigation of a detection method for a subsurface crack in the outer race of a cylindrical roller bearing. Eksploatacja i Niezawodnosc Maint. Reliab. 19(2), 211–219 (2017)

    Article  Google Scholar 

  67. Liu, J., Shi, Z.F., Shao, Y.M., Shi, B.Y., Tian, Z.J., Chen, J.H.: A numerical study on vibrations of a roller bearing with a surface crack in the races. In: Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC2017, August 6–9, Cleveland, Ohio, USA (2017)

  68. Jin, X.Z., Kang, N.Z.: A study on rolling bearing contact fatigue failure by macro-observation and micro-analysis. Wear Mater. 1, 205–213 (1989)

    Google Scholar 

  69. Ibrahim, R.A.: Handbook of Structural Life Assessment. Wiley, London (2017)

    Book  Google Scholar 

  70. Staverding, B.: Size effect for dynamic fracture. Mater. Sci. Eng. 7(6), 342–347 (1971)

    Article  Google Scholar 

  71. Gruzdkov, A.A., Sitnikova, E.V., Morozov, N.F., Pktrov, Y.V.: Thermal effect in dynamic yielding and fracture of metals and alloys. Math. Mech. Solids 14(1–2), 72–87 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. Schmidt, R.M.: An examination of dynamic fracture under biaxial-strain conditions. Exp. Mech. 13(4), 163–167 (1973)

    Article  Google Scholar 

  73. Meyers, M.A., Aimone, C.T.: Dynamic fracture (spalling) of metals. Prog. Mater. Sci. 28(1), 1–96 (1983)

    Article  Google Scholar 

  74. Tallian, T.E.: Failure Atlas for Hertz Contact Machine Elements. ASME Press, New York (1992)

    Google Scholar 

  75. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  76. Olver, A.V.: The mechanism of rolling contact fatigue: an update. J. Eng. Tribol. 219(5), 313–330 (2005)

    Google Scholar 

  77. Halme, J., Andersson, P.: Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics-state of the art. J. Eng. Tribol. 224(4), 377–393 (2010)

    Google Scholar 

  78. Sadeghi, F., Jalalahmadi, B., Slack, T.S., Raje, N., Arakere, N.K.: A review of rolling contact fatigue. J. Tribol. 131(4), 041403 (2009)

    Article  Google Scholar 

  79. Harris, T.A., Kotzalas, M.N.: Essential Concepts of Bearing Technology. Taylor & Francis Group, CRC Press, Florida (2007)

    Google Scholar 

  80. Palmgren, A.: Ball and Roller Bearing Engineering. SKF Industries, Philadelphia (1945)

    Google Scholar 

  81. Washo, M.W.: A quick method for determining root causes and corrective actions of failed ball bearings. Lubr. Eng. 52(3), 206–213 (1996)

    Google Scholar 

  82. Volker, E., Martin, H.R.: Early detection of damage in rolling bearings. ISA Trans. 23(3), 27–32 (1984)

    Google Scholar 

  83. Scheithe, W.: Better bearing vibration analysis. Hydrocarb. Process 71, 57–64 (1992)

    Google Scholar 

  84. Gupta, A.K., Sharma, V.K.: Failure of ball bearings and its diagnosis by vibration analysis. Chem. Eng. World 24(5), 45–9 (1989)

    Google Scholar 

  85. Eschmann, P., Hasbargen, L.: Ball and Roller Bearings: Theory, Design, and Application. John Wiley and Sons, Chichester (1985). (No. 621.822 E7 1985)

    Google Scholar 

  86. McFadden, P.D., Smith, J.D.: Model for the vibration produced by a single point defect in a rolling element bearing. J. Sound Vib. 96(1), 69–82 (1984)

    Article  Google Scholar 

  87. McFadden, P.D., Smith, J.D.: The vibration produced by multiple point defects in a rolling element bearing. J. Sound Vib. 98(2), 263–273 (1985)

    Article  Google Scholar 

  88. Tandon, N., Choudhury, A.: An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect. J. Sound Vib. 205(3), 275–292 (1997)

    Article  Google Scholar 

  89. Wang, Y., Kootsookos, P.J.: Modeling of low shaft speed bearing faults for condition monitoring. Mech. Syst. Signal Process. 12(3), 415–426 (1998)

    Article  Google Scholar 

  90. Kiral, Z., Karagülle, H.: Simulation and analysis of vibration signals generated by rolling element bearing with defects. Tribol. Int. 36(9), 667–678 (2003)

    Article  Google Scholar 

  91. Kiral, Z., Karagülle, H.: Vibration analysis of rolling element bearings with various defects under the action of an unbalanced force. Mech. Syst. Signal Process. 20(8), 1967–1991 (2006)

    Article  Google Scholar 

  92. Sassi, S., Badri, B., Thomas, M.: A numerical model to predict damaged bearing vibrations. J. Vib. Control 13(11), 1603–1628 (2007)

    Article  MATH  Google Scholar 

  93. Behzad, M., Bastami, A.R., Mba, D.: A new model for estimating vibrations generated in the defective rolling element bearings. J. Vib. Acoust. 133(4), 041011 (2011)

    Article  Google Scholar 

  94. Rafsanjani, A., Abbasion, S., Farshidianfar, A., Moeenfard, H.: Nonlinear dynamic modeling of surface defects in rolling element bearing systems. J. Sound Vib. 319(3), 1150–1174 (2009)

    Article  Google Scholar 

  95. Sopanen, J., Mikkola, A.: Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: theory. J. Multi-body Dyn. 217(3), 201–211 (2003)

    Google Scholar 

  96. Sopanen, J., Mikkola, A.: Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 2: implementation and results. J. Multi-body Dyn. 217(3), 213–223 (2003)

    Google Scholar 

  97. Cao, M., Xiao, J.: A comprehensive dynamic model of double-row spherical roller bearing—model development and case studies on surface defects, preloads, and radial clearance. Mech. Syst. Signal Process. 22(2), 467–489 (2008)

    Article  Google Scholar 

  98. Arslan, H., Aktürk, N.: An investigation of rolling element vibrations caused by local defects. J. Tribol. 130(4), 041101 (2008)

    Article  Google Scholar 

  99. Sawalhi, N., Randall, R.B.: Simulating gear and bearing interactions in the presence of faults: Part I: the combined gear bearing dynamic model and the simulation of localised bearing faults. Mech. Syst. Signal Process. 22(8), 1924–1951 (2008)

    Article  Google Scholar 

  100. Sawalhi, N., Randall, R.B.: Simulating gear and bearing interactions in the presence of faults: Part II: simulation of the vibrations produced by extended bearing faults. Mech. Syst. Signal Process. 22(8), 1952–1966 (2008)

    Article  Google Scholar 

  101. Patel, V.N., Tandon, N., Pandey, R.K.: A dynamic model for vibration studies of deep groove ball bearings considering single and multiple defects in races. J. Tribol. 132(4), 041101 (2010)

    Article  Google Scholar 

  102. Nakhaeinejad, M., Bryant, M.D.: Dynamic modeling of rolling element bearings with surface contact defects using bond graphs. J. Tribol. 133(1), 011102 (2011)

    Article  Google Scholar 

  103. Kankar, P.K., Sharma, S.C., Harsha, S.P.: Vibration based performance prediction of ball bearings caused by localized defects. Nonlinear Dyn. 69(3), 847–875 (2012)

    Article  MathSciNet  Google Scholar 

  104. Patil, M.S., Mathew, J., Rajendrakumar, P.K., Desai, S.: A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing. Int. J. Mech. Sci. 52(9), 1193–1201 (2010)

    Article  Google Scholar 

  105. Tadina, M., Boltežar, M.: Improved model of a ball bearing for the simulation of vibration signals due to faults during run-up. J. Sound Vib. 330(17), 4287–4301 (2011)

    Article  Google Scholar 

  106. Liu, J., Shao, Y., Lim, T.C.: Vibration analysis of ball bearings with a localized defect applying piecewise response function. Mech. Mach. Theory 56, 156–169 (2012)

    Article  Google Scholar 

  107. Liu, J., Shao, Y., Zuo, M.J.: The effects of the shape of localized defect in ball bearings on the vibration waveform. J. Multi-body Dyn. 227(3), 261–274 (2013)

    Google Scholar 

  108. Liu, J., Shao, Y., Lim, T.C.: Impulse vibration transmissibility characteristics in the presence of localized surface defects in deep groove ball bearing systems. J. Multi-body Dyn. 228(1), 62–81 (2014)

    Google Scholar 

  109. Shao, Y., Liu, J., Ye, J.: A new method to model a localized surface defect in a cylindrical roller-bearing dynamic simulation. J. Eng. Tribol. 228(2), 140–159 (2014)

    Google Scholar 

  110. Liu, J., Shao, Y., Zhu, W.D.: A new model for the relationship between vibration characteristics caused by the time-varying contact stiffness of a deep groove ball bearing and defect Sizes. J. Tribol. 137(3), 031101 (2015)

    Article  Google Scholar 

  111. Liu, J., Shao, Y.: A new dynamic model for vibration analysis of a ball bearing due to a localized surface defect considering edge topographies. Nonlinear Dyn. 79(2), 1329–1351 (2015)

    Article  Google Scholar 

  112. Liu, J., Shao, Y.: A numerical investigation of effects of defect edge discontinuities on contact forces and vibrations for a defective roller bearing. J. Multi-body Dyn. 230(4), 387–400 (2016)

    Google Scholar 

  113. Liu, J., Shao, Y.M.: An improved analytical model for a lubricated roller bearing including a localized defect with different edge shapes. J. Vib. Control (2017). https://doi.org/10.1177/1077546317716315

    Article  Google Scholar 

  114. Liu, J., Shi, Z., Shao, Y.: A numerical investigation of the plastic deformation at the spall edge for a roller bearing. Eng. Fail. Anal. 80, 263–271 (2017)

    Article  Google Scholar 

  115. Liu, J., Shi, Z., Shao, Y., Xiao, H.: Effects of spall edge profiles on the edge plastic deformation for a roller bearing. J. Mater. Des. Appl. (2017). https://doi.org/10.1177/1464420717710276

    Article  Google Scholar 

  116. Liu, J., Shao, Y.: Vibration modelling for a rotor-bearing-housing system including a localized fault. J. Multi-Body Dyn. (2017). https://doi.org/10.1177/1464419317738427

    Article  Google Scholar 

  117. Cao, H., Niu, L., He, Z.: Method for vibration response simulation and sensor placement optimization of a machine tool spindle system with a bearing defect. Sensors 12(7), 8732–8754 (2012)

    Article  Google Scholar 

  118. Niu, L., Cao, H., He, Z., Li, Y.: Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways. J. Manuf. Sci. Eng. 136(4), 041015 (2014)

    Article  Google Scholar 

  119. Niu, L., Cao, H., He, Z., Li, Y.: A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects. J. Sound Vib. 357, 207–232 (2015)

    Article  Google Scholar 

  120. Yuan, X., Zhu, Y., Zhang, Y.: Multi-body vibration modelling of ball bearing-rotor system considering single and compound multi-defects. J. Multi-body Dyn. 228(2), 199–212 (2014)

    Google Scholar 

  121. Kulkarni, P.G., Sahasrabudhe, A.D.: A dynamic model of ball bearing for simulating localized defects on outer race using cubic hermite spline. J. Mech. Sci. Technol. 28(9), 3433–3442 (2014)

    Article  Google Scholar 

  122. Wang, F., Jing, M., Yi, J., Dong, G., Liu, H., Ji, B.: Dynamic modelling for vibration analysis of a cylindrical roller bearing due to localized defects on raceways. J. Multi-body Dyn. 229(1), 39–64 (2015)

    Google Scholar 

  123. Li, Z., Zhou, Q., An, Q., Wang, Z.: Dynamic analysis of an unbalanced rotor-water pump-bearing system considering varying compliance effect and localized defects on bearing races. J. Multi-body Dyn. 229(4), 424–438 (2015)

    Google Scholar 

  124. Ahmadi, A.M., Petersen, D., Howard, C.Q.: A nonlinear dynamic vibration model of defective bearings—the importance of modelling the finite size of rolling elements. Mech. Syst. Signal Process. 52–53, 309–326 (2015)

    Article  Google Scholar 

  125. Petersen, D., Howard, C.Q., Prime, Z.: Varying stiffness and load distributions in defective ball bearings: analytical formulation and application to defect size estimation. J. Sound Vib. 337, 284–300 (2015)

    Article  Google Scholar 

  126. Moazenahmadi, A., Howard, C.Q.: A defect size estimation method based on operational speed and path of rolling elements in defective bearings. J. Sound Vib. 385, 138–148 (2016)

    Article  Google Scholar 

  127. Patel, U.A., Upadhyay, S.H.: An analytical model (7 D.O.F.) for the prediction of the vibration response of cylindrical roller element bearings due to a combined localized defect. J. Multi-body Dyn. 229(4), 383–406 (2015)

    Google Scholar 

  128. Patel, U.A., Upadhyay, S.H.: Nonlinear dynamic response of cylindrical roller bearing-rotor system with 9 degree of freedom model having a combined localized defect at inner-outer races of bearing. Tribol. Trans. (2016). https://doi.org/10.1080/10402004.2016.1163759

    Article  Google Scholar 

  129. Ghalamchi, B., Sopanen, J., Mikkola, A.: Modeling and dynamic analysis of spherical roller bearing with localized defects: analytical formulation to calculate defect depth and stiffness. Shock Vib. 2016, 1–11 (2016)

    Article  Google Scholar 

  130. Cui, L., Zhang, Y., Zhang, F., Zhang, J., Lee, S.: Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis. J. Sound Vib. 364, 67–76 (2016)

    Article  Google Scholar 

  131. Ding, W.M., Zhang, Z.N., Zhao, F.G.: Vibration response of ball bearings with different defect sizes in the outer raceway: simulation with a 3D finite element model. In: The 14th IFToMM World Congress, Taipei, Taiwan, October 25–30 (2015)

  132. Nabhan, A., Nouby, M., Sami, A.M., Mousa, M.O.: Vibration analysis of deep groove ball bearing with outer race defect using ABAQUS. J. Low Freq. Noise Vib. Act. Control 35(4), 312–325 (2016)

    Article  Google Scholar 

  133. Khanam, S., Dutt, J.K., Tandon, N.: Impact force based model for bearing local fault identification. J. Vib. Acoust. 137(5), 051002 (2015)

    Article  Google Scholar 

  134. Khanam, S., Tandon, N., Dutt, J.K.: Multi-event excitation force model for inner race defect in a rolling element bearing. J. Tribol. 138(1), 011106 (2016)

    Article  Google Scholar 

  135. Leturiondo, U., Salgado, O., Galar, D.: Multi-body modelling of rolling element bearings and performance evaluation with localised damage. Eksploatacja I Niezawodnosc-Maint. Reliab. 18(4), 638–648 (2016)

    Article  Google Scholar 

  136. Leturiondo, U., Salgado, O., Galar, D.: Methodology for the physics-based modelling of multiple rolling element bearing configurations. J. Multi-body Dyn. 231, 194–212 (2016). https://doi.org/10.1177/1464419316660930

    Article  Google Scholar 

  137. Xu, Y., Di, L., Zhou, J., Jin, C., Guo, Q.: Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis. ISA Trans. 61, 221–228 (2016)

    Article  Google Scholar 

  138. Moustafa, W.S., Cousinard, O., Bolaers, F., Sghir, K.A., Dron, J.P.: Low speed bearings fault detection and size estimation using instantaneous angular speed. J. Vib. Control 22(15), 3413–3425 (2016)

    Article  Google Scholar 

  139. Kogan, G., Bortman, J., Klein, R.: A new model for spall-rolling-element interaction. Nonlinear Dyn. 87, 219–236 (2017)

    Article  Google Scholar 

  140. Niu, L., Cao, H., Xiong, X.: Dynamic modeling and vibration response simulations of angular contact ball bearings with ball defects considering the three-dimensional motion of balls. Tribol. Int. 109, 26–39 (2017)

    Article  Google Scholar 

  141. Liu, J., Shi, Z., Shao, Y.M.: An analytical model to predict vibrations of a cylindrical roller bearing with a localized surface defect. Nonlinear Dyn. 89, 2085–2102 (2017)

    Article  Google Scholar 

  142. Liu, J., Shao, Y., Qin, X.: Dynamic simulation for a tapered roller bearing considering a localized surface fault on the rib of the inner race. J. Multi-body Dyn. 231(4), 670–683 (2017)

    Google Scholar 

  143. Liu, J., Shao, Y.: Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges. J. Sound Vib. 398(23), 84–102 (2017)

    Article  Google Scholar 

  144. Tallian, T.E.: Prediction of rolling contact fatigue life in contaminated lubricant: Part I—Mathematical model. J. Lubr. Technol. 98(2), 251–257 (1976)

    Article  Google Scholar 

  145. Tallian, T.E.: Prediction of rolling contact fatigue life in contaminated lubricant: Part II—Experimental. J. Lubr. Technol. 98(2), 384–392 (1976)

    Article  Google Scholar 

  146. Ville, F., Nelias, D.: Influence of the nature and size of solid particles on the indentation features in EHL contacts. Tribol. Ser. 34, 399–409 (1998)

    Article  Google Scholar 

  147. Ville, F., Nelias, D.: Early fatigue failure due to dents in EHL contacts. Tribol. Trans. 42(4), 795–800 (1999)

    Article  Google Scholar 

  148. Xu, G., Sadeghi, F.: Spall initiation and propagation due to debris denting. Wear 201(1), 106–116 (1996)

    Article  Google Scholar 

  149. Xu, G., Sadeghi, F., Cogdell, J.D.: Debris denting effects on elastohydrodynamic lubricated contacts. J. Tribol. 119(3), 579–587 (1997)

    Article  Google Scholar 

  150. Xu, G., Sadeghi, F., Hoeprich, M.R.: Residual stresses due to debris effects in ehl contacts. Tribol. Trans. 40(4), 613–620 (1997)

    Article  Google Scholar 

  151. Xu, G., Sadeghi, F., Hoeprich, M.R.: Dent initiated spall formation in EHL rolling/sliding contact. J. Tribol. 120(3), 453–462 (1998)

    Article  Google Scholar 

  152. Kang, Y.S.: Debris Effects and Denting Process on Lubricated Contacts. Ph.D. Thesis, Purdue University, West Lafayette (2004)

  153. Li, D., Kang, Y.S.: Simulation and experimental validation of tapered roller bearing vibration induced by geometrical imperfection on cup raceway. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 17–20, Buffalo, New York, USA. American Society of Mechanical Engineers, V008T11A059 (2014)

  154. Venner, C.H., Lubrecht, A.A.: Transient analysis of surface features in an EHL line contact in the case of sliding. J. Tribol. 116(2), 186–193 (1994)

    Article  Google Scholar 

  155. Venner, C.H., Lubrecht, A.A.: Numerical simulation of a transverse ridge in a circular EHL contact under rolling/sliding. J. Tribol. 116(4), 751–761 (1994)

    Article  Google Scholar 

  156. Nélias, D., Ville, F.: Detrimental effects of debris dents on rolling contact fatigue. J. Tribol. 122(1), 55–64 (2000)

    Article  Google Scholar 

  157. Ashtekar, A., Sadeghi, F., Stacke, L.: A new approach to modeling surface defects in bearing dynamics simulations. J. Tribol. 130(4), 041103 (2008)

    Article  Google Scholar 

  158. Ashtekar, A., Sadeghi, F., Stacke, L.: Surface defects effects on bearing dynamics. J. Eng. Tribol. 224(1), 25–35 (2010)

    Google Scholar 

  159. Antaluca, E., Nélias, D.: Contact fatigue analysis of a dented surface in a dry elastic–plastic circular point contact. Tribol. Lett. 29(2), 139–153 (2008)

    Article  Google Scholar 

  160. Warhadpande, A., Sadeghi, F.: Effects of surface defects on rolling contact fatigue of heavily loaded lubricated contacts. J. Eng. Tribol. 224(10), 1061–1077 (2010)

    Google Scholar 

  161. Elthalji, I., Jantunen, E.: Fault analysis of the wear fault development in rolling bearings. Eng. Fail. Anal. 57, 470–482 (2015)

    Article  Google Scholar 

  162. Elthalji, I., Jantunen, E.: Dynamic modelling of wear evolution in rolling bearings. Tribol. Int. 84, 90–99 (2015)

    Article  Google Scholar 

  163. Liu, J., Shi, Z., Shao, Y.M.: A theoretical study on vibrations of a ball bearing caused by a dent on the races. Eng. Fail. Anal. 83, 220–229 (2017)

    Article  Google Scholar 

  164. Singh, S., Köpke, U.G., Howard, C.Q., Petersen, D.: Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model. J. Sound Vib. 333(21), 5356–5377 (2014)

    Article  Google Scholar 

  165. Epps, I.K.: An Investigation into Vibrations Excited by Discrete Faults in Rolling Element Bearings. Ph.D. Thesis, School of Mechanical Engineering, The University of Canterbury, Christchurch (1991)

  166. Epps, I. K. McCallion, H.: An Investigation into the Characteristics of Vibration Excited by Discrete Faults in Rolling Element Bearings. Fourth Annual Vibrations Association of New Zealand Conference, Christchurch (1993)

  167. Sawalhi, N., Randall, R.B.: Vibration response of spalled rolling element bearings: observations, simulations and signal processing techniques to track the spall size. Mech. Syst. Signal Process. 25(3), 846–870 (2011)

    Article  Google Scholar 

  168. Baillie, D.C., Mathew, J.: A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 10(1), 1–17 (1996)

    Article  Google Scholar 

  169. Junsheng, C., Dejie, Y., Yu, Y.: A fault diagnosis approach for roller bearings based on EMD method and AR model. Mech. Syst. Signal Process. 20(2), 350–362 (2006)

    Article  Google Scholar 

  170. Fourgeau, J.M.G.A.E., Giard, D.: Wave propagation and sampling theory—Part II: Sampling theory and complex waves. Geophysics 47(2), 222–236 (1982)

    Article  Google Scholar 

  171. Lin, J., Qu, L.: Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis. J. Sound Vib. 234(1), 135–148 (2000)

    Article  Google Scholar 

  172. Thrane, N.: Hilbert transform. In: Technical Review 3, Brüel and Kjær (1984)

  173. Feldman, M.: Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25(3), 735–802 (2011)

    Article  Google Scholar 

  174. Bogert, B.P., Healy, M.J.R., Tuckey, J.W.: The frequency analysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum and shaft cracking. In: Rosenblatt, M. (eds) Proceedings of Symposium on Time Series Analysis, pp. 209–243. Wiley, NY (1963)

  175. Childers, D.G., Skinner, D.P., Kemerait, R.C.: The cepstrum: a guide to processing. Proc. IEEE 65(10), 1428–1443 (1977)

    Article  Google Scholar 

  176. Randall, R.B., Hee, J.: Cepstrum analysis. In: Technical Review 3, Brüel and Kjær (1981)

  177. Zhao, S., Liang, L., Xu, G., Wang, J., Zhang, W.: Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method. Mech. Syst. Signal Process. 40(1), 154–177 (2013)

    Article  Google Scholar 

  178. Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos Interdiscip. J. Nonlinear Sci. 5(1), 110–117 (1995)

    Article  MathSciNet  Google Scholar 

  179. Yu, Y., Junsheng, C.: A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294(1), 269–277 (2006)

    Article  Google Scholar 

  180. Yan, R., Gao, R.X.: Approximate entropy as a diagnostic tool for machine health monitoring. Mech. Syst. Signal Process. 21(2), 824–839 (2007)

    Article  MathSciNet  Google Scholar 

  181. He, Y., Zhang, X.: Approximate entropy analysis of the acoustic emission from defects in rolling element bearings. J. Vib. Acoust. 134(6), 061012 (2012)

    Article  Google Scholar 

  182. Kumar, R., Singh, M.: Outer race defect width measurement in taper roller bearing using discrete wavelet transform of vibration signal. Measurement 46(1), 537–545 (2013)

    Article  Google Scholar 

  183. Singh, M., Yadav, R.K., Kumar, R.: Discrete wavelet transform based measurement of inner race defect width in taper roller bearing. Mapan 28(1), 17–23 (2013)

    Article  Google Scholar 

  184. Khanam, S., Tandon, N., Dutt, J.K.: Fault size estimation in the outer race of ball bearing using discrete wavelet transform of the vibration signal. Proc. Technol. 14, 12–19 (2014)

    Article  Google Scholar 

  185. Jena, D.P., Panigrahi, S.N.: Precise measurement of defect width in tapered roller bearing using vibration signal. Measurement 55, 39–50 (2014)

    Article  Google Scholar 

  186. Kumar, A., Kumar, R.: Enhancing weak defect features using undecimated and adaptive wavelet transform for estimation of roller defect size in a bearing. Tribol. Trans. (2016). https://doi.org/10.1080/10402004.2016.1213343

    Article  Google Scholar 

  187. Wardle, F.P., Poon, S.Y.: Rolling bearing noise–cause and cure. Chart. Mech. Eng. 30, 36–40 (1983)

    Google Scholar 

  188. Sunnersjö, C.S.: Rolling bearing vibrations—the effects of geometrical imperfections and wear. J. Sound Vib. 98(4), 455–474 (1985)

    Article  Google Scholar 

  189. Ost, W., De Baets, P.: Failure analysis of the deep groove ball bearings of an electric motor. Eng. Fail. Anal. 12(5), 772–783 (2005)

    Article  Google Scholar 

  190. Liu, J., Shao, Y.: Vibration modelling of nonuniform surface waviness in a lubricated roller bearing. J. Vib. Control 23(7), 1115–1132 (2017)

    Article  Google Scholar 

  191. Tallian, T.E., Gustafsson, O.G.: Progress in rolling bearing vibration research and control. ASLE Trans. 8(3), 195–207 (1965)

    Article  Google Scholar 

  192. Meyer, L.D., Ahlgren, F.F., Weichbrodt, B.: An analytic model for ball bearing vibrations to predict vibration response to distributed defects. J. Mech. Des. 102(2), 205–210 (1980)

    Article  Google Scholar 

  193. Rahnejat, H., Gohar, R.: The vibrations of radial ball bearings. J. Mech. Eng. Sci. 199(3), 181–193 (1985)

    Article  Google Scholar 

  194. Wardle, F.P.: Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearings Part 1: theory. J. Mech. Eng. Sci. 202(5), 305–312 (1988)

    Article  Google Scholar 

  195. Wardle, F.P.: Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearings Part 2: experimental Validation. J. Mech. Eng. Sci. 202(5), 313–319 (1988)

    Article  Google Scholar 

  196. Hine, M.J.: Absolute ball bearing wear measurements from SSME turbopump dynamic signals. J. Sound Vib. 128(2), 321–331 (1989)

    Article  Google Scholar 

  197. Yhland, E.: A linear theory of vibrations caused by ball bearings with form errors operating at moderate speed. J. Tribol. 114(2), 348–359 (1992)

    Article  Google Scholar 

  198. Su, Y., Sheen, Y.: On the detectability of roller bearing damage by frequency analysis. J. Mech. Eng. Sci. 207(1), 23–32 (1993)

    Article  Google Scholar 

  199. Ono, K., Takahasi, K.: Theoretical analysis of shaft vibration supported by a ball bearing with small sinusoidal waviness. IEEE Trans. Magn. 32(3), 1709–1714 (1996)

    Article  Google Scholar 

  200. Ohta, H., Sugimoto, N.: Vibration characteristics of tapered roller bearings. J. Sound Vib. 190(2), 137–147 (1996)

    Article  Google Scholar 

  201. Choudhury, A., Tandon, N.: A theoretical model to predict vibration response of rolling bearings to distributed defects under radial load. J. Vib. Acoust. 120(1), 214–220 (1998)

    Article  Google Scholar 

  202. Tandon, N., Choudhury, A.: A theoretical model to predict the vibration response of rolling bearings in a rotor bearing system to distributed defects under radial load. J. Tribol. 122(3), 609–615 (2000)

    Article  Google Scholar 

  203. Lynagh, N., Rahnejat, H., Ebrahimi, M., Aini, R.: Bearing induced vibration in precision high speed routing spindles. Int. J. Mach. Tools Manuf. 40(4), 561–577 (2000)

    Article  Google Scholar 

  204. Wensing, J.A., Van Nijen, G.C.: The dynamic behaviour of a system that includes a rolling bearing. J. Eng. Tribol. 215(6), 509–518 (2001)

    Google Scholar 

  205. Jang, G.H., Jeong, S.W.: Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom. J. Tribol. 124(1), 82–90 (2002)

    Article  Google Scholar 

  206. Jang, G.H., Jeong, S.W.: Analysis of a ball bearing with waviness considering the centrifugal force and gyroscopic moment of the ball. J. Tribol. 125(3), 487–498 (2003)

    Article  Google Scholar 

  207. Jang, G.H., Jeong, S.W.: Stability analysis of a rotating system due to the effect of ball bearing waviness. J. Tribol. 125(1), 91–101 (2003)

    Article  Google Scholar 

  208. Jang, G., Jeong, S.W.: Vibration analysis of a rotating system due to the effect of ball bearing waviness. J. Sound Vib. 269(3), 709–726 (2004)

    Article  Google Scholar 

  209. Harsha, S.P., Kankar, P.K.: Stability analysis of a rotor bearing system due to surface waviness and number of balls. Int. J. Mech. Sci. 46(7), 1057–1081 (2004)

    Article  MATH  Google Scholar 

  210. Harsha, S.P., Sandeep, K., Prakash, R.: Nonlinear dynamic response of a rotor bearing system due to surface waviness. Nonlinear Dyn. 37(2), 91–114 (2004)

    Article  MATH  Google Scholar 

  211. Harsha, S.P., Sandeep, K., Prakash, R.: Non-linear dynamic behaviors of rolling element bearings due to surface waviness. J. Sound Vib. 272(3), 557–580 (2004)

    Article  Google Scholar 

  212. Harsha, S.P.: Nonlinear dynamic analysis of a high-speed rotor supported by rolling element bearings. J. Sound Vib. 290(1), 65–100 (2006)

    Article  Google Scholar 

  213. Changqing, B., Qingyu, X.: Dynamic model of ball bearings with internal clearance and waviness. J. Sound Vib. 294(1), 23–48 (2006)

    Article  Google Scholar 

  214. Liqin, W., Li, C., Dezhi, Z., Le, G.: Nonlinear dynamics behaviors of a rotor roller bearing system with radial clearances and waviness considered. Chin. J. Aeronaut. 21(1), 86–96 (2008)

    Article  Google Scholar 

  215. Kankar, P.K., Sharma, S.C., Harsha, S.P.: Nonlinear vibration signature analysis of a high speed rotor bearing system due to race imperfection. J. Comput. Nonlinear Dyn. 7(1), 011014 (2012)

    Article  Google Scholar 

  216. Babu, C.K., Tandon, N., Pandey, R.K.: Vibration modeling of a rigid rotor supported on the lubricated angular contact ball bearings considering six degrees of freedom and waviness on balls and races. J. Vib. Acoust. 134(1), 011006 (2012)

    Article  Google Scholar 

  217. Hwang, P., Nguyen, V.T.: Dynamic model to predict effect of race waviness on vibrations associated with deep-groove ball bearing. J. Korean Soc. Tribol. Lubr. Eng. 30(1), 64–70 (2014)

    Google Scholar 

  218. Xu, L.X., Li, Y.G.: Modeling of a deep-groove ball bearing with waviness defects in planar multibody system. Multibody Syst. Dyn. 33(3), 229–258 (2015)

    Article  MathSciNet  Google Scholar 

  219. Liu, W., Zhang, Y., Feng, Z., Zhao, J., Wang, D.: A study on waviness induced vibration of ball bearings based on signal coherence theory. J. Sound Vib. 333(23), 6107–6120 (2014)

    Article  Google Scholar 

  220. Liu, J., Wu, H., Shao, Y.: A comparative study of surface waviness models for predicting vibrations of a ball bearing. Sci. China Technol. Sci. 60(12), 1841–1852 (2017)

    Article  Google Scholar 

  221. Zhang, X., Han, Q., Peng, Z., Chu, F.: A comprehensive dynamic model to investigate the stability problems of the rotor-bearing system due to multiple excitations. Mech. Syst. Signal Process. 70–71, 1171–1192 (2016)

    Article  Google Scholar 

  222. Wang, H., Han, Q., Zhou, D.: Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings. Mech. Syst. Signal Process. 85, 16–40 (2017)

    Article  Google Scholar 

  223. Dolenc, B., Boskoski, P., Juricic, Đ: Distributed bearing fault diagnosis based on vibration analysis. Mech. Syst. Signal Process. 66–67, 521–532 (2016)

  224. Aithal, S., Prasad, N.S., Shunmugam, M.S., Chellapandi, P.: Effect of manufacturing errors on load distribution in large diameter slewing bearings of fast breeder reactor rotatable plugs. J. Mech. Eng. Sci. 230(9), 1449–1460 (2016)

    Article  Google Scholar 

  225. Xing, Y., Xu, H., Pei, S., Zhang, X.F., Chang, W.: Mechanical analysis of spherical roller bearings due to misalignments between inner and outer rings. J. Mech. Eng. Sci. 231(17), 3250–3262 (2017)

    Article  Google Scholar 

  226. Yang, Z., Hong, J., Zhang, J., Wang, M.Y.: Research on the rotational accuracy measurement of an aerostatic spindle in a rolling bearing performance analysis instrument. Int. J. Precis. Eng. Manuf. 15(7), 1293–1302 (2014)

    Article  Google Scholar 

  227. Noguchi, S., Ono, K.: Reduction of NRRO in ball bearings for HDD spindle motors. Precis. Eng. 28(4), 409–418 (2004)

    Article  Google Scholar 

  228. Tamura, A.: On the vibrations caused by ball diameter differences in a ball bearing. Bull. JSME 11(44), 229–234 (1968)

    Article  Google Scholar 

  229. Gupta, P.K.: On the geometrical imperfections in cylindrical roller bearings. J. Tribol. 110(1), 13–18 (1988)

    Article  Google Scholar 

  230. Aktark, N., Gohar, R.: The effect of ball size variation on vibrations associated with ball-bearings. J. Eng. Tribol. 212(2), 101–110 (1998)

    Google Scholar 

  231. Harsha, S.P.: The effect of ball size variation on nonlinear vibrations associated with ball bearings. J. Multi-body Dyn. 218(4), 191–210 (2004)

    Google Scholar 

  232. Vafaei, S., Rahnejat, H.: Indicated repeatable runout with wavelet decomposition (IRR-WD) for effective determination of bearing-induced vibration. J. Sound Vib. 260(1), 67–82 (2003)

    Article  Google Scholar 

  233. Noguchi, S., Hiruma, K., Kawa, H., Kanada, T.: The influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution. Precis. Eng. 29(1), 11–18 (2005)

    Article  Google Scholar 

  234. Upadhyay, S.H., Jain, S.C., Harsha, S.P.: Non-linear vibration signature analysis of a high-speed rotating shaft due to ball size variations and varying number of balls. J. Multi-body Dyn. 223(2), 83–105 (2009)

    Google Scholar 

  235. Chen, G., Mao, F., Wang, B.: Effects of off-sized cylindrical rollers on the static load distribution in a cylinder roller bearing. J. Eng. Tribol. 226(8), 687–696 (2012)

    Google Scholar 

  236. Chen, G., Wang, B., Mao, F.: Effects of raceway roundness and roller diameter errors on clearance and runout of a cylindrical roller bearing. J. Eng. Tribol. 227(3), 275–285 (2013)

    Google Scholar 

  237. Zhou, X., Xu, H., Xiong, X., Wang, L.: Load distribution model of deep groove ball bearing with ball off size. In: Assembly and Manufacturing (ISAM), 2013 IEEE International Symposium, pp. 58–63. IEEE (2013, July)

  238. Yu, S., Wang, D., Dong, H., Wang, B.: A new method for determining load distributions among rollers of bearing with manufacturing errors. J. Mech. Eng. Sci. 227(11), 2402–2415 (2013)

    Article  Google Scholar 

  239. Ma, F., Ji, P., Li, Z., Wu, B., An, Q.: Influences of off-sized rollers on mechanical performance of spherical roller bearings. J. Multi-body Dyn. 229(4), 344–356 (2015)

    Google Scholar 

  240. Ji, P., Gao, Y., Ma, F., An, Q.: Influences of roller diameter error on contact stress for cylindrical roller bearing. J. Eng. Tribol. 229(6), 689–697 (2015)

    Google Scholar 

  241. Tong, V., Hong, S.: Characteristics of tapered roller bearing with geometric error. Int. J. Precis. Eng. Manuf. 16(13), 2709–2716 (2015)

    Article  Google Scholar 

  242. Tong, V.C., Hong, S.W.: Study on the stiffness and fatigue life of tapered roller bearings with roller diameter error. J. Eng. Tribol. (2016). https://doi.org/10.1177/1350650116649889

    Article  Google Scholar 

  243. Liu, J., Yan, Z.L., Shao, Y.M.: An investigation for the friction torque of a needle roller bearing with the roundness error. Mech. Mach. Theory 121, 259–272 (2018)

    Article  Google Scholar 

  244. Harris, T.A.: Effect of misalignment on fatigue life of cylindrical roller bearings having crowned rolling members. J. Tribol. 91, 294–300 (1968)

    Google Scholar 

  245. Xing, Y., Xu, H., Pei, S., Zhang, X., Chang, W.: Mechanical analysis of spherical roller bearings due to misalignments between inner and outer rings. J. Mech. Eng. Sci. (2016). https://doi.org/10.1177/0954406216643108

    Article  Google Scholar 

  246. Zantopulos, H.: The effect of misalignment on the fatigue life of tapered roller bearings. J. Lubr. Technol. 94(2), 181–186 (1972)

    Article  Google Scholar 

  247. Liu, J.Y.: The effect of misalignment on the life of high speed cylindrical roller bearings. J. Lubr. Technol. 93(1), 60–68 (1971)

    Article  Google Scholar 

  248. Liu, J.Y.: Analysis of tapered roller bearings considering high speed and combined loading. J. Lubr. Technol. 98(4), 564–572 (1976)

    Article  Google Scholar 

  249. Andréason, S.: Load distribution in a taper roller bearing arrangement considering misalignment. Tribology 6(3), 84–92 (1973)

    Article  Google Scholar 

  250. De Mul, J.M., Vree, J.M., Maas, D.A.: Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction—Part II: application to roller bearings and experimental verification. J. Tribol. 111(1), 149–155 (1989)

    Article  Google Scholar 

  251. Simon, G.: Prediction of vibration behaviour of large turbo-machinery on elastic foundations due to unbalance and coupling misalignment. J. Mech. Eng. Sci. 206(1), 29–39 (1992)

    Google Scholar 

  252. Lim, T.C., Singh, R.: Vibration transmission through rolling element bearings, Part V: effect of distributed contact load on roller bearing stiffness matrix. J. Sound Vib. 169(4), 547–553 (1994)

    Article  MATH  Google Scholar 

  253. Creju, S., Bercea, I., Mitu, N.: A dynamic analysis of tapered roller bearing under fully flooded conditions Part 1: theoretical formulation. Wear 188(1), 1–10 (1995)

    Article  Google Scholar 

  254. Lee, Y.S., Lee, C.W.: Modelling and vibration analysis of misaligned rotor-ball bearing systems. J. Sound Vib. 224(1), 17–32 (1999)

    Article  Google Scholar 

  255. Nelias, D., Bercea, I.: A unified and simplified treatment of the non-linear equilibrium problem of double-row rolling bearings—Part 2: application to taper rolling bearings supporting a flexible shaft. J. Eng. Tribol. 217(3), 213–221 (2003)

    Google Scholar 

  256. Liao, N.T., Lin, J.F.: An analysis of misaligned single-row angular-contact ball bearing. J. Mech. Des. 126(2), 370–374 (2004)

    Article  Google Scholar 

  257. Patel, T.H., Darpe, A.K.: Vibration response of misaligned rotors. J. Sound Vib. 325(3), 609–628 (2009)

    Article  Google Scholar 

  258. Park, T.J.: Effect of roller profile and misalignment in EHL of finite line contacts. In: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, pp. 395-401. ASME (2010, January)

  259. Kabus, S., Hansen, M.R., Mouritsen, O.Ø.: A new quasi-static multi-degree of freedom tapered roller bearing model to accurately consider non-Hertzian contact pressures in time-domain simulations. J. Multi-body Dyn. 228, 111–125 (2014)

    Google Scholar 

  260. Ye, Z.H., Wang, L.Q.: Effects of axial misalignment of rings on the dynamic characteristics of cylindrical roller bearings. J. Eng. Tribol. (2015). https://doi.org/10.1177/1350650115606945

    Article  Google Scholar 

  261. Tong, V.C., Hong, S.W.: Fatigue life of tapered roller bearing subject to angular misalignment. J. Mech. Eng. Sci. (2015). https://doi.org/10.1177/0954406215578706

    Article  Google Scholar 

  262. Tong, V., Hong, S.: The effect of angular misalignment on the running torques of tapered roller bearings. Tribol. Int. 95, 76–85 (2016)

    Article  Google Scholar 

  263. Tong, V., Hong, S.: The effect of angular misalignment on the stiffness characteristics of tapered roller bearings. J. Mech. Eng. Sci. (2016). https://doi.org/10.1177/0954406215621098

    Article  Google Scholar 

  264. Gupta, P.K.: Transient ball motion and skid in ball bearings. J. Lubr. Technol. 97(2), 261–269 (1975)

    Article  Google Scholar 

  265. Fukata, S., Gad, E.H., Kondou, T., Ayabe, T., Tamura, H.: On the radial vibration of ball bearings: computer simulation. Bull. JSME 28(239), 899–904 (1985)

    Article  Google Scholar 

  266. Wijnant, Y.H., Wensing, J.A., Nijen, G.V.: The influence of lubrication on the dynamic behaviour of ball bearings. J. Sound Vib. 222(4), 579–596 (1999)

    Article  Google Scholar 

  267. Tiwari, R., Vyas, N.S.: Estimation of non-linear stiffness parameters of rolling element bearings from random response of rotor-bearing systems. J. Sound Vib. 187(2), 229–239 (1995)

    Article  Google Scholar 

  268. Tiwari, M., Gupta, K., Prakash, O.: Dynamic response of an unbalanced rotor supported on ball bearings. J. Sound Vib. 238(5), 757–779 (2000)

    Article  Google Scholar 

  269. Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238(5), 723–756 (2000)

    Article  Google Scholar 

  270. Massi, F., Rocchi, J., Culla, A., Berthier, Y.: Coupling system dynamics and contact behaviour: modelling bearings subjected to environmental induced vibrations and ‘false brinelling’ degradation. Mech. Syst. Signal Process. 24(4), 1068–1080 (2010)

    Article  Google Scholar 

  271. Hou, L., Chen, Y., Fu, Y., Chen, H., Lu, Z., Liu, Z.: Application of the HB-AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88(4), 2531–2551 (2017)

    Article  Google Scholar 

  272. Hou, L., Chen, Y., Fu, Y., Chen, H.: Nonlinear vibration of dual-rotor system with surface waviness in inter-shaft bearing. J. Aerosp. Power 32(3), 714–722 (2017)

    Google Scholar 

  273. Purohit, R.K., Purohit, K.: Dynamic analysis of ball bearings with effect of preload and number of balls. Int. J. Appl. Mech. Eng. 11(1), 77–91 (2006)

    MATH  Google Scholar 

  274. Nakhaeinejad, M.: Fault Detection and Model-Based Diagnostics in Nonlinear Dynamic Systems. University of Texas, Austin (2010)

    Google Scholar 

  275. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  276. Muszynska, A.: Rotor-to-stationary element rub-related vibration phenomena in rotating machinery. Shock Vib. Dig. 21, 3–11 (1989)

    Article  Google Scholar 

  277. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal and chaos, Part I: mechanics of contact and friction. ASME Appl. Mech. Rev. 47(7), 209–226 (1994a)

    Article  Google Scholar 

  278. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal and chaos, Part II: modeling and dynamics. ASME Appl. Mech. Rev. 47(7), 227–253 (1994b)

    Article  Google Scholar 

  279. Muszynska, A., Bently, D.E., Franklin, W.D., Hayashida, R.D., Kingsley, L.M.: Influence of rubbing on rotor dynamics, Part 1. In: Report: NAS 1.26:183648–PT–1. NASA, Washington, DC (1989a)

  280. Muszynska, A., Bently, D.E., Franklin, W.D., Hayashida, R.D., Kingsley, L.M.: Influence of rubbing on rotor dynamics, Part 2. In: Report: NAS 1.26:183649-PT-2. NASA, Washington, DC (1989b)

  281. Meeks, C.R., Tran, L.: Ball bearing dynamic analysis using computer methods—Part I: analysis. J. Tribol. 118(1), 52–58 (1996)

    Article  Google Scholar 

  282. Wensing, J.A.: On the Dynamics of Ball Bearings. University of Twente, Enschede (1998)

    Google Scholar 

  283. Qiu, J., Seth, B.B., Liang, S.Y., Zhang, C.: Damage mechanics approach for bearing lifetime prognostics. Mech. Syst. Signal Process. 16(5), 817–829 (2002)

    Article  Google Scholar 

  284. Harsha, S.P.: Nonlinear dynamic analysis of rolling element bearings due to cage run-out and number of balls. J. Sound Vib. 289(1), 360–381 (2006)

    Article  Google Scholar 

  285. Kappaganthu, K., Nataraj, C.: Nonlinear modeling and analysis of a rolling element bearing with a clearance. Commun. Nonlinear Sci. Numer. Simul. 16(10), 4134–4145 (2011)

    Article  MATH  Google Scholar 

  286. Ashtekar, A., Sadeghi, F.: Experimental and analytical investigation of high speed turbocharger ball bearings. J. Eng. Gas Turbines Power 133(12), 122501 (2011)

    Article  Google Scholar 

  287. Pandya, D.H., Upadhyay, S.H., Harsha, S.P.: Nonlinear dynamic analysis of high speed bearings due to combined localized defects. J. Vib. Control 20(15), 2300–2313 (2014)

    Article  Google Scholar 

  288. Zhang, Y.Y., Wang, X.L., Zhang, X.Q., Yan, X.L.: Dynamic analysis of a high-speed rotor-ball bearing system under elastohydrodynamic lubrication. J. Vib. Acoust. 136(6), 061003 (2014)

    Article  Google Scholar 

  289. While, M.F.: Rolling element bearing vibration transfer characteristics: effect of stiffness. J. Appl. Mech. 46(3), 677–684 (1979)

    Article  MATH  Google Scholar 

  290. Lim, T.C., Singh, R.: Vibration transmission through rolling element bearings, Part II: system studies. J. Sound Vib. 139(2), 201–225 (1990)

    Article  Google Scholar 

  291. Aini, R., Rahnejat, H., Gohar, R.: Vibration modeling of rotating spindles supported by lubricated bearings. J. Tribol. 124(1), 158–165 (2002)

    Article  Google Scholar 

  292. Jain, S., Hunt, H.: A dynamic model to predict the occurrence of skidding in wind-turbine bearings. J. Phys. Conf. Ser. 305(1), 012027 (2011)

    Article  Google Scholar 

  293. Cui, L., Zheng, J.: Nonlinear vibration and stability analysis of a flexible rotor supported on angular contact ball bearings. J. Vib. Control 20(12), 1767–1782 (2014)

    Article  MATH  Google Scholar 

  294. Wang, W., Hu, L., Zhang, S., Kong, L.: Modeling high-speed angular contact ball bearing under the combined radial, axial and moment loads. J. Mech. Eng. Sci. 228(5), 852–864 (2014)

    Article  Google Scholar 

  295. Kogan, G., Klein, R., Kushnirsky, A., Bortman, J.: Toward a 3D dynamic model of a faulty duplex ball bearing. Mech. Syst. Signal Process. 54, 243–258 (2015)

    Article  Google Scholar 

  296. Zhang, X., Han, Q., Peng, Z., Chu, F.: Stability analysis of a rotor-bearing system with time-varying bearing stiffness due to finite number of balls and unbalanced force. J. Sound Vib. 332(25), 6768–6784 (2013)

    Article  Google Scholar 

  297. Zhang, X., Han, Q., Peng, Z., Chu, F.: A comprehensive dynamic model to investigate the stability problems of the rotor-bearing system due to multiple excitations. Mech. Syst. Signal Process. 70, 1171–1192 (2016)

    Article  Google Scholar 

  298. Gunduz, A., Dreyer, J.T., Singh, R.: Effect of bearing preloads on the modal characteristics of a shaft-bearing assembly: experiments on double row angular contact ball bearings. Mech. Syst. Signal Process. 31, 176–195 (2012)

    Article  Google Scholar 

  299. Zhuo, Y., Zhou, X., Yang, C.: Dynamic analysis of double-row self-aligning ball bearings due to applied loads, internal clearance, surface waviness and number of balls. J. Sound Vib. 333(23), 6170–6189 (2014)

    Article  Google Scholar 

  300. Leblanc, A., Nelias, D., Defaye, C.: Nonlinear dynamic analysis of cylindrical roller bearing with flexible rings. J. Sound Vib. 325(1), 145–160 (2009)

    Article  Google Scholar 

  301. Patel, U.A., Upadhyay, S.H.: Theoretical model to predict the effect of localized defect on dynamic behavior of cylindrical roller bearing at inner race and outer race. J. Multi-body Dyn. 228(2), 152–171 (2014)

    Google Scholar 

  302. Patel, U.K.A., Upadhyay, S.H.: Nonlinear dynamic response of cylindrical roller bearing-rotor system with 9 degree of freedom model having a combined localized defect at inner-outer races of bearing. Tribol. Trans. 60(2), 284–299 (2017)

    Article  Google Scholar 

  303. Bercea, I., Cretu, S., Nelias, D.: Analysis of double-row tapered roller bearings, Part I-model. Tribol. Trans. 46(2), 228–239 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The research work financed with the National Natural Science Foundation of China under Grant Nos. 51605051 and 51475053, and Chongqing Research Program of Basic Research and Frontier Technology No. cstc2017jcyjAX0202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Shao, Y. Overview of dynamic modelling and analysis of rolling element bearings with localized and distributed faults. Nonlinear Dyn 93, 1765–1798 (2018). https://doi.org/10.1007/s11071-018-4314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4314-y

Keywords

Navigation