Skip to main content
Log in

General high-order rogue waves to nonlinear Schrödinger–Boussinesq equation with the dynamical analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

General high-order rogue waves of the nonlinear Schrödinger–Boussinesq equation are obtained by the KP-hierarchy reduction theory, and the N-order rogue waves are expressed with the determinants, whose entries are all algebraic forms, which is shown in the theorem. It is found that the fundamental first-order rogue waves can be classified into three patterns: four-petal state, dark state, bright state by choosing different values of parameter \(\alpha \). An interesting phenomenon is discovered as the evolution of the parameter \(\alpha \): the rogue wave changes from four-petal state to dark state, whereafter bright state, which are consistent with the change in the corresponding critical points to the function of two variables. Furthermore, the dynamical property of second-order and third-order rogue waves is plotted, which can be regarded as the nonlinear superposition of the fundamental first-order rogue waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Onorato, M., Osborne, A.R., Srio, M.: Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys. Rev. Lett. 96, 014503 (2006)

    Article  Google Scholar 

  2. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Article  Google Scholar 

  3. Peterson, P., Soomere, T., Engelbrecht, J., Groesen, E.V.: Soliton interaction as a possible model for extreme waves in shallow water. Nonlinear Process. Geophys. 10, 503–510 (2003)

    Article  Google Scholar 

  4. Pelinovsky, E., Kharif, C., Talipova, T.: Large-amplitude long wave interaction with a vertical wall. Eur. J. Mech. B Fluid 27, 409–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1058 (2007)

    Article  Google Scholar 

  6. Pierangeli, D., Mei, F.D., Conti, C., Agranat, A.J., DelRe, E.: Spatial rogue waves in photorefractive ferroelectrics. Phys. Rev. Lett. 115, 093901 (2015)

    Article  Google Scholar 

  7. Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013)

    Article  Google Scholar 

  8. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Article  Google Scholar 

  9. Moslem, W.M.: Langmuir rogue wave in electron–positron plasmas. Phys. Plasmas 18, 032301 (2011)

    Article  Google Scholar 

  10. Yan, Z.Y.: Vector financial rogue waves. Phys. Lett. A 375, 4274–4279 (2011)

    Article  MATH  Google Scholar 

  11. Ohta, Y., Yang, J.K.: Genera high-order rogue wvae and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. Lond. Sect. A 468, 1716–1740 (2012)

    Article  MATH  Google Scholar 

  12. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  Google Scholar 

  13. Guo, B.L., Ling, L.M., Liu, Q.P.: High-order solution and generalized Darboux transformation of derivative nonlinear Schrödinger equation. Stud. Appl. Math. 130, 317–344 (2012)

    Article  Google Scholar 

  14. Ling, L.M., Guo, B.L., Zhao, L.C.: High-order rogue waves in vector nonlinear Schrödinger equation. Phys. Rev. E 89, 041201 (2014)

    Article  Google Scholar 

  15. Xu, S.W., He, J.S., Wang, L.H.: The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A Math. Theor. 44, 305203 (2011)

    Article  MATH  Google Scholar 

  16. Wang, Y.Y., Liang, C., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic–quintic nonlinearity. Nonlinear Dyn. 90, 1269–1275 (2017)

    Article  MathSciNet  Google Scholar 

  17. Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)

    Article  MathSciNet  Google Scholar 

  18. Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic–septimal nonlinear materials under PT-symmetric potentials. Nonlinear Dyn. 92, 1351–1358 (2018)

    Article  Google Scholar 

  19. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B 25, 16–43 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Article  Google Scholar 

  21. Zhao, L.C., Xin, G.G., Yang, Z.Y.: Rogue-wave pattern transition induced by relative frequency. Phys. Rev. E 90, 022918 (2014)

    Article  Google Scholar 

  22. Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A., Sergeeva, A., Pelinovsky, E., Akhmediev, N.: Observation of hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 056601 (2012)

    Article  Google Scholar 

  23. Guo, B.L., Ling, L.M.: Rogue wave, breathers and bright–dark-rogue solutions for the coupled Schrödinger equations. Chin. Phys. Lett. 28, 110202 (2011)

    Article  Google Scholar 

  24. Zhang, G.Q., Yan, Z.Y., Wen, X.Y., Chen, Y.: Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations. Phys. Rev. E 95, 042201 (2017)

    Article  MathSciNet  Google Scholar 

  25. Xu, T., Chen, Y., Lin, J.: Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics. Chin. Phys. B 26, 120200 (2017)

    Google Scholar 

  26. Wei, J., Wang, X., Geng, X.G.: Periodic and rational solutions of the reduced Maxwell–Bloch equations. Commun. Nonlinear Sci. Numer. Simul. 59, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  27. Liu, Y.K., Li, B., An, H.L.: General high-order breathers, lumps in the (\(2+1\))-dimensional Boussinesq equation. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4181-6

    Google Scholar 

  28. Zhang, X.E., Chen, Y., Tang, X.Y.: Rogue wave and a pair of resonance stripe solitons to a reduced generalized (\(3+1\))-dimensional KP equation. arXiv:1610.09507

  29. Zhang, X.E., Chen, Y.: Rogue wave and a pair of resonance stripe solitons to a reduced (\(3+1\))-dimensional Jimbo–Miwa equation. Commun. Nonlinear Sci. Numer. Simul. 52, 24–31 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhang, X.E., Chen, Y.: Deformation rogue wave to the (\(2+1\))-dimensional KdV equation. Nonlinear Dyn. 90, 755–763 (2017)

    Article  MathSciNet  Google Scholar 

  31. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ohta, Y.: Wronskian solutions of soliton equations. RIMS kôkyûroku 684, 1–17 (1989)

    MathSciNet  Google Scholar 

  33. Ohta, Y., Wang, D.S., Yang, J.K.: General \(N\)-dark–dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127, 345–371 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Feng, B.F.: General \(N\)-soliton solution to a vector nonlinear Schrödinger equation. J. Phys. A Math. Theor. 47, 355203 (2014)

    Article  MATH  Google Scholar 

  35. Ling, L.M., Zhao, L.C., Guo, B.L.: Darboux transformation and multi-dark soliton for \(N\)-component nonlinear Schrödinger equations. Nonlinearity 28, 3243–3261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I., Ohta, Y.: An integrable semi-discretization of the coupled Yajima–Oikawa system. J. Phys. A Math. Theor. 49, 165201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I., Ohta, Y.: General high-order rogue waves of the (\(1+1\))-dimensional Yajima–Oikawa system. arXiv:1709.03781

  38. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I.: Rational solutions to two-and one-dimensional multicomponent Yajima–Oikawa systems. Phys. Lett. A 379, 1510–1519 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen, J.C., Feng, B.F., Chen, Y., Ma, Z.Y.: General bright–dark soliton solutions to (\(2+1\))-dimensional multi-component long-wave–short-wave resonance interaction system. Nonlinear Dyn. 88, 1–16 (2017)

    Article  MATH  Google Scholar 

  40. Han, Z., Chen, Y., Chen, J.C.: General \(N\)-dark soliton solutions of the multi-component Mel’nikov system. J. Phys. Soc. Jpn. 86, 074005 (2017)

    Article  Google Scholar 

  41. Han, Z., Chen, Y., Chen, J.C.: Bright-dark mixed \(N\)-soliton solutions of the multi-component mel’nikov system. J. Phys. Soc. Jpn. 86, 104008 (2017)

    Article  Google Scholar 

  42. Sun, B.N., Wazwaz, A.M.: Interaction of lumps and dark solitons in the Mel’nikov equation. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4180-7

    Google Scholar 

  43. Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85, 731–737 (2016)

    Article  MathSciNet  Google Scholar 

  44. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (\(3+1\))-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)

    Article  MathSciNet  Google Scholar 

  45. Rao, N.N.: Exact solutions of coupled scalar field equations. J. Phys. A Math. Gen. 22, 4813–4825 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Singh, S.V., Rao, N.N., Shukla, P.K.: Nonlinearly coupled Langmuir and dust-acoustic waves in a dusty plasma. J. Plasma Phys. 3, 551–567 (1998)

    Article  Google Scholar 

  47. Hase, Y., Satsuma, J.: An \(N\)-soliton solutions for the nonlinear Schrödinger equation coupled to the Boussinesq equation. J. Phys. Soc. Jpn. 57, 679–682 (1988)

    Article  Google Scholar 

  48. Mu, G., Qin, Z.Y.: Rogue waves for the coupled Schrödinger–Boussinesq equation and the coupled higgs equation. J. Phys. Soc. Jpn. 81, 084001 (2012)

    Article  Google Scholar 

  49. Lu, C.N., Fu, C., Yang, H.W.: Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 327, 104–116 (2018)

    MathSciNet  Google Scholar 

  50. Xu, X.X.: An integrable coupling hierarchy of the Mkdv-integrable systems, its hamiltonian structure and corresponding nonisospectral integrable hierarchy. Appl. Math. Comput. 216, 344–353 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Xu, T., Chen, Y.: Darboux transformation of the coupled nonisospectral Gross–Pitaevskii system and its multi-component generalization. Commun. Nonlinear Sci. Numer. Simul. 57, 276–289 (2018)

    Article  MathSciNet  Google Scholar 

  52. Tang, L.Y., Fan, J.C.: A family of liouville integrable lattice equations and its conservation laws. Appl. Math. Comput. 217, 1907–1912 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Li, X.Y., Li, Y.X., Yang, H.X.: Two families of liouville integrable lattice equations. Appl. Math. Comput. 217, 8671–8682 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to SY Lou, WX Ma, EG Fan, ZY Yan, XY Tang, JC Chen, X Wang and other members of our discussion group for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

The project is supported by the Global Change Research Program of China (No. 2015CB953904), National Natural Science Foundation of China (Nos. 11435005, 11675054), Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (No. ZF1213).

Appendix A

Appendix A

In this appendix, we will give the proof to the lemma in Sect. 3 with the KP reduction theory. The detail is as follows:

Proof

Based on the solution of the bilinear KP-hierarchy (4), let us bring in the functions with the following form

$$\begin{aligned} \hat{m}^{(n)}= & {} \frac{1}{p+q}\left( -\frac{p-a}{q+a}\right) ^ne^{\gamma +\hat{\gamma }},~~ \hat{\phi }^{(n)}\nonumber \\= & {} (p-a)^ne^{\gamma },~~ \hat{\psi }^{(n)} =\left( \frac{-1}{q+a}\right) ^ne^{\hat{\gamma }}, \end{aligned}$$
(32)

where

$$\begin{aligned} \gamma= & {} \frac{1}{p-a}x_{-1}+px_1+p^2x_2+p^3x_3,\\ \hat{\gamma }= & {} \frac{1}{q+a}+qx_1-q^2x_2+q^3x_3, \end{aligned}$$

in addition, these functions should be satisfied the differential form

$$\begin{aligned} \partial _{x_1}\hat{m}^{(n)}= & {} \hat{\phi }^{(n)}\hat{\psi }^{(n)},\\ \partial _{x_2}\hat{m}^{(n)}= & {} \left( \partial _{x_1}\hat{\phi }^{(n)}\right) \hat{\psi }^{(n)}-\hat{\phi }^{(n)}\left( \partial _{x_1}\hat{\psi }^{(n)}\right) ,\\ \partial _{x_3}\hat{m}^{(n)}= & {} \left( \partial _{x_1}^2\hat{\phi }^{(n)}\right) \hat{\psi }^{(n)}-\left( \partial _{x_1}\hat{\phi }^{(n)}\right) \hat{\psi }^{(n)}\\&\quad +\,\hat{\phi }^{(n)}\left( \partial _{x_1}^2\hat{\psi }^{(n)}\right) ,\\ \partial _{x_{-1}}\hat{m}^{(n)}= & {} -\,\hat{\phi }^{(n-1)}\hat{\psi }^{(n+1)},\\ \hat{m}^{(n+1)}= & {} \hat{m}^{(n)}+\hat{\phi }^{(n)}\hat{\psi }^{(n+1)},\\ \partial _{x_2}\hat{\phi }^{(n)}= & {} \partial _{x_1}^2\hat{\phi }^{(n)},\\ \partial _{x_3}\hat{\phi }^{(n)}= & {} \partial _{x_1}^3\hat{\phi }^{(n)},\\ \hat{\phi }^{(n+1)}= & {} (\partial _{x_1}-a)\hat{\phi }^{(n)},\\ \partial _{x_2}\hat{\psi }^{(n)}= & {} -\partial _{x_1}^2\hat{\psi }^{(n)},\\ \partial _{x_3}\hat{\psi }^{(n)}= & {} \partial _{x_1}^3\hat{\psi }^{(n)},\\ \hat{\psi }^{(n-1)}= & {} -(\partial _{x_1}+a)\hat{\psi }^{(n)}. \end{aligned}$$

Then introduce a new entries of the matrix composed by two differential operators:

$$\begin{aligned} \hat{m}_{ij}^{(\mu \nu n)}= & {} A_{i}^{(\mu )}B_{j}^{(\nu )}\hat{m}^{(n)}, \hat{\phi }_i^{(\mu n)}=A_{i}^{(\mu )}\hat{\phi }^{(n)}, \hat{\psi }_j^{(\nu n)}\\= & {} B_{j}^{(\nu )}\hat{\psi }^{(n)}. \end{aligned}$$

It is clear that the operators \(A_i^{\mu }, B_{j}^{\nu }\) can commute with the differential operator \(\partial _{x_1}, \partial _{x_{-1}}, \partial _{x_2}, \partial _{x_3}\), so these functions are suit for the bilinear KP-hierarchy (3). Furthermore, for an arbitrary \((i_1, i_2, \ldots i_N;\) \(\mu _1, \mu _2, \ldots , \mu _N, j_1, j_2, \ldots , j_N, \nu _1, \nu _2, \ldots , \nu _N)\), the corresponding determinant

$$\begin{aligned} \hat{\tau _n}=\text{ det }\left( \hat{m}_{i_k,j_l}^{(\mu _k, \nu _l,n)}\right) \end{aligned}$$

is satisfied the bilinear KP-hierarchy, especially, when \(\hat{\tau }_n=\underset{1\le i,j\le N}{\text{ det }}\left( \hat{m}_{2i-1,2j-1}^{N-i,N-j,n}\right) \), it is also the solution. Based on the Leibniz rule, one can get

$$\begin{aligned} \begin{aligned}&\left[ (p-a)\partial _p\right] ^m\left( p^3+\frac{p}{4}-\frac{1}{8(p-a)}\right) \\&\quad =\sum _{l=0}^{m}\left( \begin{array}{cc} m\\ l \end{array} \right) \left[ 3^l(p{-}a)^3{+}3a2^l(p{-}a)^2\right. \\&\qquad \left. +\,(3a^2{+}\frac{1}{4})(p{-}a){+}({-}1)^{l{+}1}\frac{1}{8(p{-}a)}\right] \\&\qquad \left[ (p{-}a)\partial _p\right] ^{m{-}l}+\left( a^3+\frac{1}{4}a\right) [(p-a)\partial _p]^m, \end{aligned} \end{aligned}$$
(33)

and

$$\begin{aligned} \begin{aligned}&\left[ (q+a)\partial _q\right] ^m\left( q^3+\frac{q}{4}-\frac{1}{8(q+a)}\right) \\&\quad =\sum _{l=0}^{m}\left( \begin{array}{cc} m\\ l \end{array} \right) \left[ 3^l(q{+}a)^3{-}3a2^l(q{+}a)^2\right. \\&\qquad \left. +\,(3a^2{+}\frac{1}{4})(q{+}a){+}({-}1)^{l{+}1}\frac{1}{8(q{+}a)}\right] \\&\qquad \left[ (q{+}a)\partial _q\right] ^{m{-}l}-\left( a^3+\frac{1}{4}a\right) [(q+a)\partial _q]^m. \end{aligned} \end{aligned}$$
(34)

Hence, one can obtain the commutator operation

$$\begin{aligned} \begin{aligned}&\left[ A_k^{(\mu )}, p^3+\frac{p}{4}-\frac{1}{8(p-a)}\right] \\&=\sum _{j=0}^{k}\frac{a_j^{(\mu )}}{(k-j)!} \left[ \left( (p-a)\partial _p\right) ^{k-j}, p^3 +\frac{p}{4}-\frac{1}{8(p-a)} \right] \\&=\sum _{j=0}^{k-1}\sum _{l=1}^{k{-}j}\frac{a_j^{(\mu )}\left[ 3^l(p{-}a)^3{+}3a2^l(p{-}a)^2{+}(\frac{12a^2{+}1}{4})(p{-}a){+}\frac{({-}1)^{l{+}1}}{8(p{-}a)}\right] \left[ (p{-}a)\partial _p\right] ^{k{-}j{-}l}}{l!(k{-}j{-}l)!}\\ \end{aligned} \end{aligned}$$
(35)

where \(\left[ ,\right] \) devotes the commutator given by \(\left[ X,Y\right] =XY-YX\).

Suppose \(\theta \) is the solution of the quadratic dispersion equation

$$\begin{aligned}&3\left( \theta -a\right) ^3+6a\left( \theta -a\right) ^2+\left( 3a^2+\frac{1}{4}\right) (\theta -a)\nonumber \\&\quad +\frac{1}{8(\theta -a)}=0, \end{aligned}$$
(36)

then the commutator operation equals to zero when \(k=0, 1\),

$$\begin{aligned} \left[ A_k^{(\mu )}, p^3+\frac{p}{4}-\frac{1}{8(p-a)}\right] \Bigg |_{p=\theta }=0. \end{aligned}$$
(37)

When \(k\ge 2\):

$$\begin{aligned} \begin{aligned}&\left[ A_k^{(\mu )}, p^3+\frac{p}{4}-\frac{1}{8(p-a)}\right] \\&\quad =\sum _{j=0}^{k-2}\sum _{l=2}^{k{-}j}\frac{a_j^{(\mu )}\left[ 3^l(p{-}a)^3{+}3a2^l(p{-}a)^2{+}\left( \frac{12a^2{+}1}{4}\right) (p{-}a){+}\frac{({-}1)^{l{+}1}}{8(p{-}a)}\right] \left[ (p{-}a)\partial _p\right] ^{k{-}j{-}l}}{l!(k{-}j{-}l)!}\Bigg |_{p=\theta }\\&\quad =\sum _{j=0}^{k-2}\sum _{\tilde{l}=0}^{k{-}j{-}2}\frac{a_j^\mu \left[ 3^{\tilde{l}+2}(p{-}a)^3{+}3a2^{\tilde{l}+2}(p{-}a)^2{+}\left( \frac{12a^2{+}1}{4}\right) (p{-}a){+}\frac{({-}1)^{\tilde{l}{+}1}}{8(p{-}a)}\right] \left[ (p{-}a)\partial _p\right] ^{k{-}j{-}\tilde{l}{-}2}}{(\tilde{l}{+2})!(k{-}j{-}\tilde{l}{-}2)!}\Bigg |_{p=\theta }\\&\quad =\sum _{\hat{j}=0}^{k-2}\left( \sum _{\hat{l}=0}^{\hat{j}}\frac{3^{\hat{l}+2}(p{-}a)^3{+}3a2^{\hat{l}+2}(p{-}a)^2{+}\left( \frac{12a^2{+}1}{4}\right) (p{-}a){+}\frac{({-}1)^{\hat{l}{+}1}}{8(p{-}a)}}{(\hat{l}+2)!}a_{\hat{j}-\hat{l}}^{(\mu )}\right) \frac{\left( (p-a)\partial _p\right) ^{k-2-\hat{j}}}{(k-2-\hat{j})!}\Bigg |_{p=\theta }\\&\quad =\sum _{\hat{j}=0}^{k-2}a_{\hat{j}}^{(\mu +1)}\frac{\left( (p-a)\partial _p\right) ^{k-2-\hat{j}}}{(k-2-\hat{j})!}\bigg |_{p=\theta } =A_{k-2}^{(\mu +1)}\big |_{p=\theta }. \end{aligned} \end{aligned}$$
(38)

Thus, there exists a recurrence relation between the two differential operators

$$\begin{aligned} \left[ A_{k}^{(\mu )}, p^3+\frac{p}{4}-\frac{1}{8(p-a)}\right] \bigg |_{p=\theta }=A_{k-2}^{(\mu +1)}\bigg |_{p=\theta }, \end{aligned}$$

spontaneously, when \(k<0\), this operator \(A_{k}^{(\mu )}=0\).

Similarly, it is obviously that the differential operator \(B_{l}^{(\nu )}\) also satisfies

$$\begin{aligned} \left[ B_{l}^{\nu },q^3+\frac{q}{4}-\frac{1}{8(q+a)}\right] =B_{l-2}^{(\nu +1)}\big |_{q=\theta ^*} \end{aligned}$$

when \(l>0\), and when \(l<0\), we define \(B_{l}^{(\nu )}=0.\)

Under the above two recurrence equation, the following derivative relation can be derived as:

$$\begin{aligned} \begin{aligned}&\left( \partial _{x_3}+\frac{1}{4}\partial _{x_1}-\frac{1}{8}\partial _{x_{-1}}\right) \hat{m}_{kl}^{(\mu \nu n)}\bigg |_{p=\theta , q=\theta ^*}\\&\quad =\left( A_{k}^{(\mu )}B_{l}^{(\nu )}\left( p^3+q^3+\frac{1}{4}(p+q)\right. \right. \\&\qquad \left. \left. -\frac{1}{8}\left( \frac{1}{p-a}+\frac{1}{q+a}\right) \right) \hat{m}^{(n)}\right) \Bigg |_{p=\theta ,q=\theta ^*}\\&\quad =\left( A_{k}^{(\mu )}\left( p^3{+}\frac{p}{4}{-}\frac{1}{8(p{-}a)}\right) \right. \\&\qquad \left. B_{l}^{(\nu )}\hat{m}^{(n)}\right) \Bigg |_{p=\theta ,q=\theta ^*}\\&\qquad {+}\left( A_{k}^{(\mu )}B_{l}^{(\nu )}\left( q^3{+}\frac{q}{4}{-}\frac{1}{8(q{+}a)}\right) \right. \\&\qquad \left. \hat{m}^{(n)}\right) \Bigg |_{p=\theta ,q=\theta ^*}\\&\quad =\left( \left( \left( (p^3{+}\frac{p}{4}{-}\frac{1}{8(p{-}a)})A_{k}^{(\mu )}\right) \right. \right. \\&\qquad \left. \left. {+}A_{k-2}^{(\mu +1)}\right) B_{l}^{(\nu )}\hat{m}^{(n)}\right) \Bigg |_{p=\theta ,q=\theta ^*}\\&\qquad {+}\left( A_{k}^{(\mu )}\left( \left( \left( q^3{+}\frac{q}{4}{-}\frac{1}{8(q{+}a)}\right) B_{l}^{(\nu )}\right) \hat{m}^{(n)}\right) \right. \\&\qquad \left. +B_{l-2}^{\nu +1}\right) \Bigg |_{p=\theta ,q=\theta ^*}\\&\quad =\left( p^3{+}\frac{p}{4}{-}\frac{1}{8(p{-}a)}\right) \hat{m}_{kl}^{(\mu \nu n)}\Bigg |_{p=\theta , q=\theta ^*}\\&\qquad +\hat{m}_{k-2,l}^{(\mu +1,\nu ,n)}\Bigg |_{p=\theta ,q=\theta ^*}\\&\qquad +\left( q^3{+}\frac{q}{4}{-}\frac{1}{8(q{+}a)}\right) \hat{m}^{(\mu \nu n)}_{kl}\Bigg |_{p=\theta ,q=\theta ^*}\\&\qquad +\hat{m}_{k,l-2}^{(\mu ,\nu +1,n)}\Bigg |_{p=\theta ,q=\theta ^*}. \end{aligned} \end{aligned}$$
(39)

Once more, based on the above relation, the differential form of a special determinant rewritten as

$$\begin{aligned} \hat{\hat{\tau }}_n=\underset{1\le i,j\le N}{\text{ det }}\left( \hat{m}_{2i-1,2j-1}^{N-i,N-j,n}\big |_{p=\theta ,q=\theta ^*}\right) \end{aligned}$$
(40)

can be worked out as

$$\begin{aligned} \begin{aligned}&\left( \partial _{x_3}+\frac{1}{4}\partial _{x_1}-\frac{1}{8}\partial _{x_{-1}}\right) \hat{\hat{\tau }}_n\\&\quad =\sum _{i=1}^{N}\sum _{j=1}^{N}\triangle _{ij}\left( \partial _{x_3}+\frac{1}{4}\partial _{x_1}-\frac{1}{8}\partial _{x_{-1}}\right) \\&\qquad \left( \hat{m}_{2i-1,2j-1}^{N-1,N-j,n}\Bigg |_{p=\theta ,q=\theta ^*}\right) \\&\quad =\sum _{i=1}^{N}\sum _{j=1}^{N}\triangle _{ij}\bigg [\left( p^3{+}\frac{p}{4}{-}\frac{1}{8(p{-}a)}\right) \\&\qquad \hat{m}_{2i-1,2j-1}^{(N-i,N-j n)}\bigg |_{p=\theta , q=\theta ^*}\\&\qquad +\hat{m}_{2i-3,2j-1}^{(N-i+1,N-j,n)}\bigg |_{p=\theta ,q=\theta ^*}\\&\qquad +\left( q^3{+}\frac{q}{4}{-}\frac{1}{8(q{+}a)}\right) \hat{m}^{(N-i,N-j n)}_{2i-1,2j-1}\Bigg |_{p=\theta ,q=\theta ^*}\\&\qquad +\hat{m}_{2i-1,2j-3}^{(N-i,N-j+1,n)}\bigg |_{p=\theta ,q=\theta ^*}\bigg ]\\&\quad =\left( p^3{+}\frac{p}{4}{-}\frac{1}{8(p{-}a)}\right) N\hat{\hat{\tau }}_n\bigg |_{p=\theta ,q=\theta ^*}\\&\qquad +\sum _{i=1}^{N}\sum _{j=1}^{N}\triangle _{ij}\hat{m}_{2i-3,2j-1}^{(N-i+1,N-j,n)}\bigg |_{p=\theta ,q=\theta ^*}\\&\qquad +\left( q^3{+}\frac{q}{4}{-}\frac{1}{8(q{+}a)}\right) N\hat{\hat{\tau }}_n\bigg |_{p=\theta ,q=\theta ^*}\\&\qquad +\sum _{i=1}^{N}\sum _{j=1}^{N}\triangle _{ij}\hat{m}_{2i-1,2j-3}^{(N-i,N-j+1,n)}\bigg |_{p=\theta ,q=\theta ^*}, \end{aligned} \end{aligned}$$
(41)

where \(\triangle _{ij}\) is the (ij)-cofactor of the matrix \(\left( \hat{m}_{2i-1,2j-1}^{N-i,N-j,n}\right) \). It is obvious that \(\sum _{i=1}^{N}\sum _{j=1}^{N}\triangle _{ij}\hat{m}_{2i-3,2j-1}^{(N-i+1,N-j,n)}\big |_{p=\theta ,q=\theta ^*}=0\) for \(\triangle _{ij}\) is the (ij)-cofactor of the matrix \(\left( \hat{m}_{2i-1,2j-1}^{N-i,N-j,n}\right) \) but not the \(\left( \hat{m}_{2i-3,2j-1}^{N-i+1,N-j,n}\right) \). Similarly, \(\sum _{i=1}^{N}\sum _{j=1}^{N}\triangle _{ij}\hat{m}_{2i-1,2j-3}^{(N{-}i,N{-}j{+}1,n)}\big |_{p=\theta ,q=\theta ^*}=0.\) Therefore, Eq. (41) will be changed into

$$\begin{aligned} \begin{aligned}&\left( \partial _{x_3}+\frac{1}{4}\partial _{x_1}-\frac{1}{8}\partial _{x_{-1}}\right) \hat{\hat{\tau }}_n\\&\quad =\left( p^3{+}\frac{p}{4}{-}\frac{1}{8(p{-}a)}+q^3{+}\frac{q}{4}{-}\frac{1}{8(q{+}a)}\right) N\hat{\hat{\tau }}_n. \end{aligned} \end{aligned}$$
(42)

Due to \(\hat{\hat{\tau }}_n\) is a special case of \(\hat{\tau }_n\), so \(\hat{\hat{\tau }}_n\) is the solution to the (\(1+1\))-dimensional bilinear equation:

$$\begin{aligned} \begin{aligned}&\left( D^{2}_{x_1}+2aD_{x_1}-D_{x_2}\right) \hat{\hat{\tau }}_{n+1}\cdot \hat{\hat{\tau }}_{n}=0,\\&\left( D_{x_1}^2+D_{x_1}^4+3D_{x_2}^2-1\right) \hat{\hat{\tau }}_{n}\cdot \hat{\hat{\tau }}_{n}+\hat{\hat{\tau }}_{n+1}\cdot \hat{\hat{\tau }}_{n-1}=0. \end{aligned} \end{aligned}$$
(43)

Under reduction Eq. (42), these variables \(x_{-1}, x_{3}\) in \(\hat{\hat{\tau }}_n\) will become dummy. Thus, the matrix entries \(\hat{m}_{2N-i,2N-j}^{(N-i,N-j,n)}\) reduce to \(m^{(N-i,N-j,n)}_{2N-i,2N-j}\), \(\tau _n\) in Eq. (11) satisfy Eq. (6), and the proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, Y. General high-order rogue waves to nonlinear Schrödinger–Boussinesq equation with the dynamical analysis. Nonlinear Dyn 93, 2169–2184 (2018). https://doi.org/10.1007/s11071-018-4317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4317-8

Keywords

Navigation