Skip to main content

Advertisement

Log in

Dynamic evolution of a primary resonance MEMS resonator under prebuckling pattern

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper analytically investigates the dynamic evolution of the primary frequency response of a prebuckling microbeam-based resonator with \(\hbox {Z}_{2}\) symmetry. A doubly clamped straight microbeam actuated by two symmetric stationary electrodes is simplified as a time-varying capacitor model for qualitative analysis purpose. Nonlinearities induced by the midplane stretching of the microbeam and the electrostatic force are considered. During solution procedure, electrostatic force holds its original form without any Taylor series expansion, and only one assumption with a small ratio of AC to DC voltage is introduced. The average equation, frequency response, backbone curve and stability condition are determined, respectively, based on the method of multiple scales combined with homotopy concept. Results demonstrate for the first time that the frequency response includes two types of branches, namely low- energy branch and high-energy branch. As the increase ion AC excitation amplitude, both branches close to each other along the backbone curve until they intersect. Further analyses are then performed to investigate the details of the backbone curve and the frequency response equation. Analytical formulas to determine the hardening and softening switches of the frequency response and the intersection condition of the low- and high-energy branches are both deduced and examined in depth. Primary frequency response properties in pull-in and secondary pull-in case are classified and depicted through theoretical predictions via the method of multiple scales and then verified through numerical results via the finite difference method combined with Floquet theory. Finally, a specific case study based on equivalent lumped parameters via Galerkin method is presented. Excellent agreements between theoretical predictions and simulation results illustrate the effectiveness of the whole analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, NewYork (2011)

    Book  Google Scholar 

  2. Lee, K.B.: Principles of Microelectromechanical Systems. Wiley, Hoboken (2011)

    Book  Google Scholar 

  3. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Article  Google Scholar 

  4. Leus, V., Elata, D.: On the dynamic response of electrostatic MEMS switches. J. Microelectromech. Syst. 17, 236–243 (2008)

    Article  Google Scholar 

  5. Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Nanotechnology 20, 275501 (2009)

    Article  Google Scholar 

  6. Najar, F., Choura, S., Elborgi, S., Abdelrahman, E.M., Nayfeh, A.H.: Modeling and design of variable-geometry electrostatic microactuators. J. Micromech. Microeng. 15, 419–429 (2005)

    Article  Google Scholar 

  7. Hammad, B.K., Abdel-Rahman, E.M., Nayfeh, A.H.: Modeling and analysis of electrostatic MEMS filters. Nonlinear Dyn. 60, 385–401 (2010)

    Article  MATH  Google Scholar 

  8. Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840–1847 (2005)

    Article  Google Scholar 

  9. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  10. Bouchaala, A., Nayfeh, A.H., Jaber, N., Younis, M.I.: Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation. J. Micromech. Microeng. 26, 105009 (2016)

    Article  Google Scholar 

  11. Li, L., Zhang, Q.C.: Nonlinear dynamic analysis of electrically actuated viscoelastic bistable microbeam system. Nonlinear Dyn. 87, 587–604 (2017)

    Article  MATH  Google Scholar 

  12. Li, L., Zhang, Q.C., Wang, W., Han, J.X.: Dynamic analysis and design of electrically actuated viscoelastic microbeams considering the scale effect. Int. J. Nonlinear Mech. 90, 21–31 (2017)

    Article  Google Scholar 

  13. Han, J.X., Zhang, Q.C., Wang, W.: Static bifurcation and primary resonance analysis of a MEMS resonator actuated by two symmetrical electrodes. Nonlinear Dyn. 80, 1585–1599 (2015)

    Article  Google Scholar 

  14. Cacan, M.R., Leadenham, S., Leamy, M.J.: An enriched multiple scales method for harmonically forced nonlinear systems. Nonlinear Dyn. 78, 1205–1220 (2014)

    Article  MathSciNet  Google Scholar 

  15. Krylov, S., Harari, I., Cohen, Y.: Stabilization of electrostatically actuated microstructures using parametric excitation. J. Micromech. Microeng. 15, 1188–1204 (2005)

    Article  Google Scholar 

  16. Mobki, H., Rezazadeh, G., Sadeghi, M., Vakili-Tahami, F., Seyyed-Fakhrabadi, M.M.: A comprehensive study of stability in an electro-statically actuated micro-beam. Int. J. Nonlinear Mech. 48, 78–85 (2013)

    Article  Google Scholar 

  17. Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16, 890–899 (2006)

    Article  Google Scholar 

  18. Mestrom, R.M.C., Fey, R.H.B., van Beek, J.T.M., Phan, K.L., Nijmeijer, H.: Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens. Actuators A Phys. 142, 306–315 (2008)

    Article  Google Scholar 

  19. Mestrom, R.M.C., Fey, R.H.B., Phan, K.L., Nijmeijer, H.: Simulations and experiments of hardening and softening resonances in a clamped-clamped beam MEMS resonator. Sens. Actuators A Phys. 162, 225–234 (2010)

    Article  Google Scholar 

  20. Rezazadeh, G., Madinei, H., Shabani, R.: Study of parametric oscillation of an electrostatically actuated microbeam using variational iteration method. Appl. Math. Model. 36, 430–443 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dai, L., Sun, L., Chen, C.: A control approach for vibrations of a nonlinear microbeam system in multi-dimensional form. Nonlinear Dyn. 77, 1677–1692 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Barceló, J., Rosselló, J.L., Bota, S., Segura, J., Verd, J.: Electrostatically actuated microbeam resonators as chaotic signal generators: a practical perspective. Commun. Nonlinear Sci. Numer. Simul. 30, 316–327 (2016)

    Article  MathSciNet  Google Scholar 

  23. Han, J.X., Zhang, Q.C., Wang, W., Jin, G., Li, B.Z.: Stability and perturbation analysis of a one-degree-of-freedom doubly clamped microresonator with delayed velocity feedback control. J. Vib. Control. https://doi.org/10.1177/1077546317706886 (2017)

  24. Younesian, D., Sadri, M., Esmailzadeh, E.: Primary and secondary resonance analyses of clamped-clamped micro-beams. Nonlinear Dyn. 76, 1867–1884 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bouchaala, A., Jaber, N., Yassine, O., Shekhah, O., Chernikova, V., Eddaoudi, M., Younis, M.I.: Nonlinear-based MEMS sensors and active switches for gas detection. Sensors 16, 758 (2016)

    Article  Google Scholar 

  26. Abdel-Rahman, E.M., Nayfeh, A.H.: Secondary resonances of electrically actuated resonant microsensors. Nonlinear Dyn. 13, 491–501 (2003)

    Google Scholar 

  27. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37, 6964–6978 (2013)

    Article  MathSciNet  Google Scholar 

  28. Azizi, S., Ghazavi, M.R., Khadem, S.E., Rezazadeh, G., Cetinkaya, C.: Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn. 73, 853–867 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Pontes, B.R., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dyn. 69, 1837–1857 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Towfighian, S., G.R., Heppler, Abdel-Rahman, E.M.: Analysis of a chaotic electrostatic micro-oscillator. J. Comput. Nonlinear Dyn. 6, 011001 (2011)

    Article  Google Scholar 

  31. Luo, A.C.J., Wang, F.Y.: Chaotic motion in a micro-electro-mechanical system with non-linearity from capacitors. Commun. Nonlinear Sci. Numer. Simul. 7, 31–49 (2002)

    Article  MATH  Google Scholar 

  32. Alsaleem, F.M., Younis, M.I.: Stabilization of electrostatic MEMS resonators using a delayed feedback controller. Smart Mater. Struct. 19, 035016 (2010)

    Article  Google Scholar 

  33. Lakrad, F., Belhaq, M.: Suppression of pull-in instability in MEMS using a high-frequency actuation. Commun. Nonlinear Sci. Numer. Simul. 15, 3640–3646 (2010)

    Article  Google Scholar 

  34. Gutierrez, A., Torres, P.J.: Nonautonomous saddle-node bifurcation in a canonical electrostatic MEMS. Int. J. Bifurcat. Chaos. 23, 1350088 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tajaddodianfar, F., Yazdi, M.R.H., Pishkenari, H.N.: Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method. Microsyst. Technol. 23, 1913–1926 (2017)

    Article  Google Scholar 

  36. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Tajaddodianfar, F.: Study of nonlinear dynamics and chaos in MEMS/NEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 22, 611–622 (2015)

    Article  Google Scholar 

  37. Han, J.X., Zhang, Q.C., Wang, W.: Design considerations on large amplitude vibration of a doubly clamped microresonator with two symmetrically located electrodes. Commun. Nonlinear Sci. Numer. Simul. 22, 492–510 (2015)

    Article  Google Scholar 

  38. Elshurafa, A.M., Khirallah, K., Tawfik, H.H., Emira, A.: Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators. J. Microelectromech. Syst. 20, 943–958 (2011)

    Article  Google Scholar 

  39. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  40. Han, J.X., Qi, H.J., Jin, G., Li, B.Z., Feng, J.J., Zhang, Q.C.: Mechanical behaviors of electrostatic microresonators with initial offset imperfection: qualitative analysis via time-varying capacitors. Nonlinear Dyn. https://doi.org/10.1007/s11071-017-3868-4 (2017)

  41. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  42. Li, L., Zhang, Q.C., Wang, W., Han, J.X.: Monostable dynamic analysis of microbeam-based resonators via an improved one degree of freedom model. Micromachines (2018). https://doi.org/10.3390/mi9020089

    Google Scholar 

  43. Pasharavesh, A., Ahmadian, M.T.: Characterization of a nonlinear MEMS-based piezoelectric resonator for wideband micro power generation. Appl. Math. Model. 41, 121–142 (2017)

    Article  MathSciNet  Google Scholar 

  44. Madinei, H., Haddad Khodaparast, H., Adhikari, S., Friswell, M.I.: Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency. Mech. Syst. Signal Process. 81, 360–374 (2016)

    Article  Google Scholar 

  45. Madinei, H., Haddad Khodaparast, H., Adhikari, S., Friswell, M.I., Fazeli, M.: Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device. Eur. Phys. J. 224, 2703–2717 (2015)

    Google Scholar 

  46. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.: Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode. J. Vib. Control 16, 1321–1349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11702192, 51505336, 11772218, 11602173, 11602169), Tianjin Research Program of Application Foundation and Advanced Technology (Grant Nos. 15JCQNJC05200, 16JCQNJC04700), Innovation Team Training Plan of Tianjin Universities and colleges (Grant No. TD13-5096), Tianjin Science and Technology Planning Project (Grant No. 15ZXZNGX00220), Scientific Research Program of Tianjin Education Committee (Grant No. JWK1602) and the Scientific Research Foundation of Tianjin University of Technology and Education (Grant Nos. KYQD16009, KYQD1701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

1.1 Appendix A

The derivation of the secular term via the method of multiple scales combined with the residue theorem can be described as follows.

We denote the right side of Eq. (10) as

$$\begin{aligned} \Theta =\Theta _1 +\Theta _2 +\Theta _3 \end{aligned}$$
(A.1)

where

$$\begin{aligned} \Theta _1= & {} -2D_0 D_1 x_0 +\omega ^{2}x_0 -x_0 -\mu D_0 x_0 -\alpha x_0^3 \nonumber \\ \end{aligned}$$
(A.2)
$$\begin{aligned} \Theta _2= & {} \gamma \left[ {\frac{1}{(1-x_0 )^{2}}-\frac{1}{(1+x_0 )^{2}}} \right] \end{aligned}$$
(A.3)
$$\begin{aligned} \Theta _3= & {} \frac{2\gamma \rho }{(1-x_0 )^{2}}\sin (\omega T_0 ) \end{aligned}$$
(A.4)

The secular term in Eq. (A.1) can be calculated through the following average process

$$\begin{aligned} \int _0^{2\pi } {\Theta \exp (-\hbox {i}\varphi )\mathrm{d}\varphi }= & {} \int _0^{2\pi } {(\Theta _1 +\Theta _2 +\Theta _3 )\exp (-\hbox {i}\varphi )\mathrm{d}\varphi } \nonumber \\= & {} \int _0^{2\pi } {\Theta _1 \exp (-\hbox {i}\varphi )\mathrm{d}\varphi } \nonumber \\&+\,\int _0^{2\pi } {\Theta _2 \exp (-\hbox {i}\varphi )\mathrm{d}\varphi } \nonumber \\&+\,\int _0^{2\pi } {\Theta _3 \exp (-\hbox {i}\varphi )\mathrm{d}\varphi } \nonumber \\= & {} 0 \end{aligned}$$
(A.5)

where \(\varphi =\omega T_0 +\beta (T_1 )\).

We can easily derive the integration of the first term in Eq. (A.5) as

$$\begin{aligned} \int _0^{2\pi } {\Theta _1 \exp (-\hbox {i}\varphi )\mathrm{d}\varphi }= & {} -A\pi -\frac{3}{4}A^{3}\pi \alpha -\hbox {i}A\pi \mu \omega \nonumber \\&+\,A\pi \omega ^{2}-2\hbox {i}\pi \omega \frac{\mathrm{d}A}{\mathrm{d}T_1 }\nonumber \\&+\,2A\pi \omega \frac{\mathrm{d}\beta }{\mathrm{d}T_1 } \end{aligned}$$
(A.6)

The integration of the next two terms in Eq. (A.5) can be solved based on residue theorem. One can introduce the following variable

$$\begin{aligned} z=\mathrm{e}^{\mathrm{i}\varphi } \end{aligned}$$
(A.7)

The trigonometric functions \(\sin \varphi \) and \(\cos \varphi \) can be written as

$$\begin{aligned} \sin \varphi =\frac{1}{2\hbox {i}}\left( {z-\frac{1}{z}} \right) , \quad \cos \varphi =\frac{1}{2}\left( {z+\frac{1}{z}} \right) \end{aligned}$$
(A.8)

Then, the integration of the second term in Eq. (A.5) can be rewritten as

$$\begin{aligned}&\int _0^{2\pi } {\Theta _2 \exp (-\hbox {i}\varphi )\mathrm{d}\varphi } \nonumber \\&\quad =\int _{\left| z \right| =1} {-\frac{32\hbox {i}Az(1+z^{2})\gamma }{(A-2z+Az^{2})^{2}(A+2z+Az^{2})^{2}}\mathrm{d}z}\nonumber \\ \end{aligned}$$
(A.9)

Applying the residue theorem, one can obtain

$$\begin{aligned} \int _0^{2\pi } {\Theta _2 \exp (-\hbox {i}\varphi )\mathrm{d}\varphi } =\frac{4\pi \gamma A}{(1-A^{2})^{3/2}} \end{aligned}$$
(A.10)

Similarly, one can derive the third integration in Eq. (A.5) as follows

$$\begin{aligned}&\int _0^{2\pi } {\Theta _3 \exp (-\hbox {i}\varphi )\mathrm{d}\varphi } \nonumber \\&\quad =\frac{4\hbox {i}\pi \gamma \rho [(1-A^{2})^{1/2}-1]\cos \beta }{A^{2}(1-A^{2})^{1/2}}\nonumber \\&\qquad -\,\frac{4\pi \gamma \rho [(1-A^{2})^{3/2}-1\hbox {+}2A^{2}]\sin \beta }{A^{2}(1-A^{2})^{3/2}} \end{aligned}$$
(A.11)

Finally, the secular term can be expressed as

$$\begin{aligned}&-\,A\pi -\frac{3}{4}A^{3}\pi \alpha -\hbox {i}A\pi \mu \omega +A\pi \omega ^{2}\nonumber \\&\quad -\,2\hbox {i}\pi \omega \frac{\mathrm{d}A}{\mathrm{d}T_1 }+2A\pi \omega \frac{\mathrm{d}\beta }{\mathrm{d}T_1 }+\frac{4\pi \gamma A}{(1-A^{2})^{3/2}} \nonumber \\&\quad +\,\frac{4\hbox {i}\pi \gamma \rho [(1-A^{2})^{1/2}-1]\cos \beta }{A^{2}(1-A^{2})^{1/2}}\nonumber \\&\quad -\,\frac{4\pi \gamma \rho [(1-A^{2})^{3/2}-1 + 2A^{2}]\sin \beta }{A^{2}(1-A^{2})^{3/2}}=0\nonumber \\ \end{aligned}$$
(A.12)

Separating the imaginary and real parts can derive the average equation Eq. (12).

1.2 Appendix B

The coefficients in Eq. (15) are as follows

$$\begin{aligned} J_{11}= & {} -\frac{\mu }{2}+\frac{2\gamma \rho [2-3A^{2}-2(1-A^{2})^{3/2}]\cos \beta }{\omega A^{3}(1-A^{2})^{3/2}}\nonumber \\ \end{aligned}$$
(B.1)
$$\begin{aligned} J_{12}= & {} \frac{2\gamma \rho [1-(1-A^{2})^{1/2}]\sin \beta }{\omega A^{2}(1-A^{2})^{1/2}} \end{aligned}$$
(B.2)
$$\begin{aligned} J_{21}= & {} \frac{3\alpha A}{4\omega }-\frac{6\gamma A}{\omega (1-A^{2})^{5/2}}\nonumber \\&+\,\frac{2\gamma \rho [8A^{4}-8A^{2}+3-3(1-A^{2})^{5/2}]}{\omega A^{4}(1-A^{2})^{5/2}}\sin \beta \nonumber \\ \end{aligned}$$
(B.3)
$$\begin{aligned} J_{22}= & {} \frac{2\gamma \rho [(1-A^{2})^{3/2}+(2A^{2}-1)]}{\omega A^{3}(1-A^{2})^{3/2}}\cos \beta \end{aligned}$$
(B.4)

The coefficients in Eq. (16) are as follows

$$\begin{aligned} \mathfrak {R}_1= & {} \frac{\mu ^{2}[2(1-2A^{2})(1-A^{2})^{1/2}-3A^{2}(A^{2}-1)-1]}{4(1-A^{2})^{2}}\nonumber \\ \end{aligned}$$
(B.5)
$$\begin{aligned} \mathfrak {R}_2= & {} \frac{3\alpha A^{2}}{8\omega }+\frac{1-\omega ^{2}}{2\omega }-\frac{2\gamma }{\omega (1-A^{2})^{3/2}}\nonumber \\ \end{aligned}$$
(B.6)
$$\begin{aligned} \mathfrak {R}_3= & {} \frac{[1-(1-A^{2})^{1/2}][8A^{4}-8A^{2}+3-3(1-A^{2})^{5/2}]}{[(1-A^{2})^{3/2}-(1-2A^{2})]^{2}}\nonumber \\ \end{aligned}$$
(B.7)
$$\begin{aligned} \mathfrak {R}_4= & {} \frac{A^{2}[3\alpha (1-A^{2})^{5/2}-24\gamma ][1-(1-A^{2})^{1/2}]}{4\omega (1-A^{2})^{3}[1-(1-2A^{2})(1-A^{2})^{{-3}/2}]} \end{aligned}$$
(B.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Jin, G., Zhang, Q. et al. Dynamic evolution of a primary resonance MEMS resonator under prebuckling pattern. Nonlinear Dyn 93, 2357–2378 (2018). https://doi.org/10.1007/s11071-018-4329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4329-4

Keywords

Navigation