Skip to main content
Log in

An analytical approximated solution and numerical simulations of a non-ideal system with saturation phenomenon

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nowadays, researches about non-ideal problems have been increased considerably in technical-scientific community. Nonlinear problems have been widely studied due to their particularities in real problems, mainly when these nonlinearities induce interactions between a dynamical system with its excitation source, these kind of systems are called non-ideal systems. One of the excitation sources, which is of non-ideal kind, is an unbalanced DC motor with limited power supply. When it is coupled to a dynamical system, this system is subjected to Sommerfeld effect, where jump phenomena may occur. However, when the same dynamical system is of two-degrees-of-freedom and possesses 2:1 internal resonance, saturation phenomenon occurs. Therefore, in this work, the dynamical behavior of a non-ideal three-degrees-of-freedom weakly coupled system associated with quadratic nonlinearities in the equations of motion is investigated. The full system consists of two nonlinear mechanical oscillators coupled through quadratic nonlinearities and which produces a 2:1 internal resonance between their translational movements. In the bigger oscillator, an unbalanced DC motor is used as an excitation source. Under these conditions, equations of motion of the system were obtained using Lagrange’s method, and the method of multiple scales was applied to find an analytical approximated solution of the equations of motion. In addition, numerical simulations of the equations of motion were carried out to analyze the response of the non-ideal system by varying the torque of the motor. It is shown that when the excitation frequency is near to second natural frequency of the main system, saturation and jump phenomena occur. Furthermore, this work investigates the ranges of some torques of the motor, which causes the phenomena, and explores the possibility to harvest energy from high-amplitudes of vibration in a future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Balthazar, J.M., Mook, D.T., Weber, H.I., Brasil, R.M., Fenili, A., Belato, D., Felix, J.L.P.: An overview on non-ideal vibrations. Meccanica 38(6), 613–621 (2003). https://doi.org/10.1023/A:1025877308510

    Article  MATH  Google Scholar 

  2. Balthazar, J.M., Tusset, A.M., Brasil, R.M.L.R.F., Felix, J.L.P., Rocha, R.T., Janzen, F.C., Nabarrete, A., Oliveira, C.: An overview on the appearance of the Sommerfeld effect and saturation phenomenon in non-ideal vibrating systems (NIS) in macro and MEMS scales. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4126-0

    Article  Google Scholar 

  3. Kononenko, V.O.: Vibrating Systems with a Limited Power Supply. Illife Books, London (1969)

    Google Scholar 

  4. Balthazar, J.M., Brasil, R.M.L.R.D., Garzeri, F.J.: On non-ideal simple portal frame structural model: experimental results under a non-ideal excitation. In: Applied Mechanics and Materials, vol. 1, pp. 51–58. Trans Tech Publications (2004). https://doi.org/10.4028/www.scientific.net/AMM.1-2.51

    Article  Google Scholar 

  5. Felix, J.L.P., Balthazar, J.M.: Comments on a nonlinear and nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer. Nonlinear Dyn. 55(1–2), 1–11 (2009). https://doi.org/10.1007/s11071-008-9340-8

    Article  MATH  Google Scholar 

  6. Gonalves, P.J.P., Silveira, M., Petrocino, E.A., Balthazar, J.M.: Double resonance capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor. Meccanica 51(9), 2203–2214 (2016). https://doi.org/10.1007/s11012-015-0349-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Plaksiy, K.Y., Mikhlin, Y.V.: Dynamics of nonlinear dissipative systems in the vicinity of resonance. J. Sound Vib. 334, 319–337 (2015). https://doi.org/10.1016/j.jsv.2014.09.001

    Article  Google Scholar 

  8. Cveticanin, L., Zukovic, M., Cveticanin, D.: Two degree-of-freedom oscillator coupled to a non-ideal source. Int. J. Non-Linear Mech. (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.03.002

    Article  MATH  Google Scholar 

  9. Cveticanin, L., Zukovic, M.: Motion of a motor-structure non-ideal system. Eur. J. Mech. A/Solids 53, 229–240 (2015). https://doi.org/10.1016/j.euromechsol.2015.05.003

    Article  MathSciNet  MATH  Google Scholar 

  10. Cveticanin, L., Zukovic, M.: Non-ideal mechanical system with an oscillator with rational nonlinearity. J. Vib. Control 21(11), 2149–2164 (2015). https://doi.org/10.1177/1077546313508297

    Article  MathSciNet  MATH  Google Scholar 

  11. Rocha, R.T., Balthazar, J.M., Quinn, D.D., Tusset, A.M., Felix, J.L.P.: Non-ideal system with quadratic nonlinearities containing a two-to-one internal resonance. In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V008T10A015–V008T10A015. American Society of Mechanical Engineers (2016). https://doi.org/10.1115/DETC2016-59372

  12. Piccirillo, V., Tusset, A.M., Balthazar, J.M.: Dynamical jump attenuation in a non-ideal system through a magnetorheological damper. J. Theor. Appl. Mech. 52(3), 595–604 (2014)

    Google Scholar 

  13. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  14. Mook, D.T., Plaut, R.H., HaQuang, N.: The influence of an internal resonance on non-linear structural vibrations under subharmonic resonance conditions. J. Sound Vib. 102(4), 473–492 (1985). https://doi.org/10.1016/S0022-460X(85)80108-5

    Article  Google Scholar 

  15. Nayfeh, A.H.: Nonlinear Interactions. Wiley, Hoboken (2000)

    MATH  Google Scholar 

  16. Mankala, R., Quinn, D.D.: Resonant dynamics and saturation in a coupled system with quadratic nonlinearities. In: ASME 2004 International Mechanical Engineering Congress and Exposition, pp. 621–626. American Society of Mechanical Engineers (2004). https://doi.org/10.1115/IMECE2004-61623

  17. Quinn, D., Rand, R., Bridge, J.: The dynamics of resonant capture. In: Advances in Nonlinear Dynamics: Methods and Applications, pp. 1–20. Springer Netherlands (1995). https://doi.org/10.1007/978-94-011-0367-1_1

    Google Scholar 

  18. Quinn, D.D., Gendelman, O., Kerschen, G., Sapsis, T.P., Bergman, L.A., Vakakis, A.F.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1: 1 resonance captures: part I. J. Sound Vib. 311(3), 1228–1248 (2008). https://doi.org/10.1016/j.jsv.2007.10.026

    Article  Google Scholar 

  19. Sapsis, T.P., Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Kerschen, G., Quinn, D.D.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1: 1 resonance captures: part II, analytical study. J. Sound Vib. 325(1), 297–320 (2009). https://doi.org/10.1016/j.jsv.2009.03.004

    Article  Google Scholar 

  20. Quinn, D.D.: Resonance capture in a three degree-of-freedom mechanical system. Nonlinear Dyn. 14(4), 309–333 (1997). https://doi.org/10.1023/A:1008202303432

    Article  MathSciNet  MATH  Google Scholar 

  21. Quinn, D.D.: Resonant dynamics in a rotordynamic system with nonlinear inertial coupling and shaft anisotropy. Nonlinear Dyn. 57(4), 623–633 (2009). https://doi.org/10.1007/s11071-009-9502-3

    Article  MATH  Google Scholar 

  22. Golnaraghi, M.F.: Vibration suppression of flexible structures using internal resonance. Mech. Res. Commun. 18(2–3), 135–143 (1991). https://doi.org/10.1016/0093-6413(91)90042-U

    Article  MATH  Google Scholar 

  23. Oueini, S.S., Nayfeh, A.H., Golnaraghi, M.F.: A theoretical and experimental implementation of a control method based on saturation. Nonlinear Dyn. 13(2), 189–202 (1997). https://doi.org/10.1023/A:1008207124935

    Article  MATH  Google Scholar 

  24. Oueini, S.S.: Techniques for controlling structural vibrations, Ph.D. Thesis (1999)

  25. Pai, P.F., Schulz, M.J.: A refined nonlinear vibration absorber. Int. J. Mech. Sci. 42(3), 537–560 (2000). https://doi.org/10.1016/S0020-7403(98)00135-0

    Article  MATH  Google Scholar 

  26. Pai, P.F., Wen, B., Naser, A.S., Schulz, M.J.: Structural vibration control using PZT patches and non-linear phenomena. J. Sound Vib. 215(2), 273–296 (1998). https://doi.org/10.1016/S0020-7403(98)00135-0

    Article  Google Scholar 

  27. Shoeybi, M., Ghorashi, M.: Control of a nonlinear system using the saturation phenomenon. Nonlinear Dyn. 42(2), 113–136 (2005). https://doi.org/10.1007/s11071-005-4123-y

    Article  MathSciNet  MATH  Google Scholar 

  28. Warminski, J., Cartmell, M.P., Mitura, A., Bochenski, M.: Active vibration control of a nonlinear beam with self-and external excitations. Shock Vib. 20(6), 1033–1047 (2013). https://doi.org/10.3233/SAV-130821

    Article  Google Scholar 

  29. Felix, J.L.P., Balthazar, J.M., Brasil, R.M.: On saturation control of a non-ideal vibrating portal frame foundation type shear-building. J. Vib. Control 11(1), 121–136 (2005). https://doi.org/10.1177/1077546305047656

    Article  MATH  Google Scholar 

  30. Tusset, A.M., Piccirillo, V., Bueno, A.M., Balthazar, J.M., Sado, D., Felix, J.L.P., da Fonseca, R.M.L.R.: Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J. Vib. Control 22(17), 3621–3637 (2015). https://doi.org/10.1177/1077546314564782

    Article  MathSciNet  Google Scholar 

  31. Felix, J.L.P., Silva, E.L., Balthazar, J.M., Tusset, A.M., Bueno, A.M., Brasil, R.M.L.R.F.: On nonlinear dynamics and control of a robotic arm with chaos. In: MATEC Web of Conferences, vol. 16, p. 05002. EDP Sciences (2014). https://doi.org/10.1051/matecconf/20141605002

    Article  Google Scholar 

  32. Fangcheng, X., Daejong, K.: Dynamic performance of foil bearings with a quadratic stiffness model. Neurocomputing 216, 666–671 (2016). https://doi.org/10.1016/j.neucom.2016.08.019

    Article  Google Scholar 

  33. Zhou, S., Song, G., Sun, M., Ren, Z., Wen, B.: Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities. J. Sound Vib. 412, 74–94 (2018). https://doi.org/10.1016/j.jsv.2017.09.027

    Article  Google Scholar 

  34. Huang, J.L., Su, R.K.L., Lee, Y.Y., Chen, S.H.: Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities. J. Sound Vib. 330(21), 5151–5164 (2011). https://doi.org/10.1016/j.jsv.2011.05.023

    Article  Google Scholar 

  35. Zhou, S., Song, G., Ren, Z., Wen, B.: Nonlinear analysis of a parametrically excited beam with intermediate support by using multi-dimensional incremental harmonic balance method. Chaos Solitons Fractals 93, 207–222 (2016). https://doi.org/10.1016/j.chaos.2016.10.022

    Article  MathSciNet  MATH  Google Scholar 

  36. Ghayesh, M.H., Kazemirad, S., Darabi, M.A.: A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions. J. Sound Vib. 330(22), 5382–5400 (2011). https://doi.org/10.1016/j.jsv.2011.06.001

    Article  Google Scholar 

  37. Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281(3–5), 611–626 (2005). https://doi.org/10.1016/j.jsv.2004.01.012

    Article  Google Scholar 

  38. Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Control strategies for DC motors driving rotor dynamic systems through resonance. J. Sound Vib. 411, 304–327 (2017). https://doi.org/10.1016/j.jsv.2017.09.014

    Article  Google Scholar 

  39. Piccirillo, V., Balthazar, J.M., Pontes, B.R., Felix, P., Luis, J.: On a nonlinear and chaotic non-ideal vibrating system with shape memory alloy (SMA). J. Theor Appl Mech 46(3), 597–620 (2008)

    Google Scholar 

  40. Felix, J.L.P., Balthazar, J.M.: Comments on a nonlinear and nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer. Nonlinear Dyn. 55(1–2), 1–11 (2009). https://doi.org/10.1007/s11071-008-9340-8

    Article  MATH  Google Scholar 

  41. Bolla, M.R., Balthazar, J.M., Felix, J.L., Mook, D.T.: On an approximate analytical solution to a nonlinear vibrating problem, excited by a nonideal motor. Nonlinear Dyn. 50(4), 841–847 (2007). https://doi.org/10.1007/s11071-007-9232-3

    Article  MATH  Google Scholar 

  42. Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect in a two-disk rotor dynamic system at various unbalance conditions. Meccanica 53(4–5), 681701 (2018). https://doi.org/10.1007/s11012-017-0757-3

    Article  MathSciNet  Google Scholar 

  43. Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect in a gyroscopic overhung rotor-disk system. Nonlinear Dyn. 88(3), 1565–1585 (2017). https://doi.org/10.1007/s11071-017-3329-0

    Article  Google Scholar 

  44. Samantaray, A.K., Dasgupta, S.S., Bhattacharyya, R.: Sommerfeld effect in rotationally symmetric planar dynamical systems. Int. J. Eng. Sci. 48(1), 21–36 (2010). https://doi.org/10.1016/j.ijengsci.2009.06.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from CNPq (Grant: 447539/2014-0) and CAPES, all Brazilian research funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Tumolin Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, R.T., Balthazar, J.M., Tusset, A.M. et al. An analytical approximated solution and numerical simulations of a non-ideal system with saturation phenomenon. Nonlinear Dyn 94, 429–442 (2018). https://doi.org/10.1007/s11071-018-4369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4369-9

Keywords

Navigation