Skip to main content
Log in

A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We use the method of multiple scales to derive a sixth-order nonlinear Schrödinger equation governing the evolution of slowly modulated plane-wave solutions to the nonlinear Klein–Gordon equation with polynomial nonlinearity. The coefficients of this sixth-order equation are expressed explicitly in terms of the velocity parameter as well as linear, quadratic, cubic, quadruple, and quintic nonlinear coefficients of the original nonlinear Klein–Gordon equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  2. Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations, 2nd edn. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  3. Barone, A., Esposito, F., Magee, C.J., Scott, A.C.: Theory and applications of the Sine-Gordon equation. Riv. Nuovo Cimento 1(2), 227–266 (1971)

    Article  Google Scholar 

  4. Scott, A. (ed.): Encyclopedia of Nonlinear Science. Routledge, New York, London (2005)

    MATH  Google Scholar 

  5. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  Google Scholar 

  6. Cuevas-Maraver, J., Kevrekidis, P.G., Williams, F. (eds.): The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Springer, New York (2014)

    MATH  Google Scholar 

  7. Lamb Jr., J.L.: Elements of Soliton Theory. Wiley, New York (1980)

    MATH  Google Scholar 

  8. Kosevich, A.M., Kovalev, A.S.: Vvedenie v nelineinuyu fizicheskuyu mekhaniku (Introduction to Nonlinear Physical Mechanics). Naukova Dumka, Kiev (1989)

    MATH  Google Scholar 

  9. Kosevich, A.M.: Breathers. In: Scott, A. (ed.) Encyclopedia of Nonlinear Science, pp. 76–78. Routledge, New York, London (2005)

    Google Scholar 

  10. Malomed, B.A.: The sine–Gordon model: general background, physical motivations, inverse scattering, and solitons. In: Cuevas-Maraver, J., Kevrekidis, P.G., Williams, F. (eds.) The sine–Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Springer, New York (2014). Chap. 1

    Google Scholar 

  11. Braun, O.M., Kivshar, Yu.S.: The Frenkel-Kontorova Model. Concepts, Methods, and Applications. Springer, Berlin (2004)

    Book  Google Scholar 

  12. Tzitzéica, G.: Sur une nouvelle classe de surfaces. Rend. Circ. Mat. Palermo 25(1), 180–187 (1907)

    Article  Google Scholar 

  13. Tzitzéica, G.: Geometric infinitesimale-sur une nouvelle classes de surfaces. C. R. 144, 1257–1259 (1907)

    MATH  Google Scholar 

  14. Tzitzéica, G.: Sur une nouvelle classes de surfaces. C. R. 150, 955–956 (1910)

    MATH  Google Scholar 

  15. Kivshar, Yu.S., Malomed, B.A.: Dynamics of solitons in nearly integrable system. Rev. Mod. Phys. 61, 763–916 (1989)

    Article  Google Scholar 

  16. Toda, M.: Theory of Nonlinear Lattices. Springer, Berlin (1981)

    Book  Google Scholar 

  17. Mikhailov, A.V.: Integrability of a two-dimensional generalization of the Toda chain. JETP Lett. 30, 414–418 (1979)

    Google Scholar 

  18. Bullough, R.K., Dodd, R.K.: Polynomial conserved densities for the sine-Gordon equations. Proc. R. Soc. Lond. A 352, 481–503 (1977)

    Article  MathSciNet  Google Scholar 

  19. Zhiber, A.V., Shabat, A.B.: The Klein-Gordon equation with nontrivial group. Sov. Phys. Dokl. 247, 607–610 (1979)

    MathSciNet  Google Scholar 

  20. Fordy, A.P., Gibbons, J.A.: Integrable nonlinear Klein–Gordon equations and Toda lattices. Commun. Math. Phys. 77, 21–30 (1980)

    Article  MathSciNet  Google Scholar 

  21. Rajaraman, R.: Solitons and instantons: An introduction to solitons and instantons in quantum theory. North-Holland, Amsterdam (1987)

  22. Wazwaz, A.M.: The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein–Gordon equation. Appl. Math. Comp. 167, 1179–1195 (2005)

    Article  MathSciNet  Google Scholar 

  23. Wazwaz, A.M.: The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations. Chaos Solitons Fractals 25, 55–63 (2005)

    Article  MathSciNet  Google Scholar 

  24. Triki, H., Wazwaz, A.M.: Envelope solitons for generalized forms of the phi-four equation. J. King Saud Univ. Sci. 25, 129–133 (2013)

    Article  Google Scholar 

  25. Bullough, R.K., Caudrey, P.J., Gibbs, H.M.: The double sine–Gordon equation: a physically applicable system of equations. In: Bullough, R.K., Caudrey, P.J. (eds.) Solitons. Topics in Current Physics, vol. 17. Springer, Berlin (1980)

    Google Scholar 

  26. Wazwaz, A.M.: Exact solutions of the generalized sine-Gordon and the generalized sinh-Gordon equations. Chaos Solitons Fractals 28, 127–135 (2006)

    Article  MathSciNet  Google Scholar 

  27. Peyrard, M., Remoissenet, M.: Soliton like excitations in a one-dimensional atomic chain with a nonlinear deformable substrate potential. Phys. Rev. B 26(6), 2886–2899 (1982)

    Article  Google Scholar 

  28. Lukomsky, V.P., Gandzha, I.S.: Two-parameter method for describing the nonlinear evolution of narrow-band wave trains. Ukr. J. Phys. 54(1–2), 207–215 (2009)

    Google Scholar 

  29. Sassaman, R., Biswas, A.: Topological and non-topological solitons of the Klein–Gordon equations in 1 + 2 dimensions. Nonlinear Dyn. 61, 23–28 (2010)

    Article  MathSciNet  Google Scholar 

  30. Sharma, A.S., Buti, B.: Envelope solitons and holes for sine-Gordon and non-linear Klein–Gordon equations. J. Phys. A Math. Gen. 9(11), 1823–1826 (1976)

    Article  MathSciNet  Google Scholar 

  31. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)

    MATH  Google Scholar 

  32. Amiranashvili, Sh., Bandelow, U., Akhmediev, N.: Few-cycle optical solitary waves in nonlinear dispersive media. Phys. Rev. A 87, 013805 (2013)

  33. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  34. Lukomsky, V.P., Sedletsky, Yu.V.: Do teorii neliniinoi dyspersii khvyl’ovykh paketiv u metodi bahat’okh masshtabiv (On the theory of the nonlinear dispersion of wave packets in the multiple scales method). J. Phys. Stud. 5(2), 107–110 (2001)

  35. Litvak, A.G., Talanov, V.I.: A parabolic equation for calculating the fields in dispersive nonlinear media. Radiophys. Quantum Electron. 10, 296–302 (1967)

    Article  Google Scholar 

  36. Kodama, Y., Hasegawa, A.: Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. 23, 510–524 (1987)

    Article  Google Scholar 

  37. Sedletsky, Yu.V.: The fourth-order nonlinear Schrödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid. JETP 97, 180–193 (2003)

    Article  Google Scholar 

  38. Slunyaev, A.V.: A high-order nonlinear envelope equation for gravity waves in finite-depth water. JETP 101, 926–941 (2005)

    Article  Google Scholar 

  39. Gandzha, I.S., Sedletsky, Yu.V., Dutykh, D.S.: High-order nonlinear Schrödinger equation for the envelope of slowly modulated gravity waves on the surface of finite-depth fluid and its quasi-soliton solutions. Ukr. J. Phys. 59(12), 1201–1215 (2014)

    Article  Google Scholar 

  40. Gandzha, I.S., Sedletsky, Yu.V.: Bright and dark solitons on the surface of finite-depth fluid below the modulation instability threshold. Phys. Lett. A 381, 1784–1790 (2017)

    Article  MathSciNet  Google Scholar 

  41. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972)

    MathSciNet  Google Scholar 

  42. Potasek, M.J., Tabor, M.: Exact solutions for an extended nonlinear Schrödinger equation. Phys. Lett. A 154, 449–452 (1991)

    Article  MathSciNet  Google Scholar 

  43. Borich, M.A., Kobelev, A.V., Smagin, A.V., Tankeyev, A.P.: Evolution of the surface magnetostatic wave envelope solitons in a ferromagnetic-dielectric-metal structure. J. Phys. Cond. Matt. 15, 8543–8559 (2003)

    Article  Google Scholar 

  44. Tsitsas, N.L., Rompotis, N., Kourakis, I., Kevrekidis, P.G., Frantzeskakis, D.J.: Higher-order effects and ultrashort solitons in left-handed metamaterials. Phys. Rev. E 79, 037601 (2009)

    Article  Google Scholar 

  45. Lü, X., Ma, W.-X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 31, 40–46 (2016)

    Article  Google Scholar 

  46. Chen, Y.-F., Beckwitt, K., Wise, F.W., Aitken, B.G., Sanghera, J.S., Aggarwal, I.D.: Measurement of fifth- and seventh-order nonlinearities of glasses. J. Opt. Soc. Am. B 23, 347–352 (2006)

    Article  Google Scholar 

  47. Pushkarov, Kh.I., Pushkarov, D.I., Tomov, I.V.: Self-action of light beams in nonlinear media: soliton solutions. Optic. Quantum Electr. 11, 471–478 (1979)

    Article  Google Scholar 

  48. Zakharov, V.E., Kuznetsov, E.A.: Optical solitons and quasisolitons. JETP 86, 1035–1046 (1998)

    Article  Google Scholar 

  49. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33(5), 1807–1816 (1992)

    Article  MathSciNet  Google Scholar 

  50. Ankiewicz, A., Wang, Y., Wabnitz, S., Akhmediev, N.: Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys. Rev. E 89, 012907 (2014)

    Article  Google Scholar 

  51. Ankiewicz, A., Akhmediev, N.: Higher-order integrable evolution equation and its soliton solutions. Phys. Lett. A 378, 358–361 (2014)

    Article  MathSciNet  Google Scholar 

  52. Chettouh, S., Triki, H., El-Akrmi, A., Zhou, Q., Moshokoa, S.P., Ullah, M.Z., Biswas, A., Belic, M.: Dipole solitons in an extended nonlinear Schrödinger equation with higher-order even and odd terms. Optik 145, 644–649 (2017)

    Article  Google Scholar 

  53. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90, 032922 (2014)

    Article  Google Scholar 

  54. Kano, T.: Normal form of nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 58(12), 4322–4328 (1989)

    Article  Google Scholar 

  55. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)

    Article  MathSciNet  Google Scholar 

  56. Sedletsky, Yu.V.: Inclusion of dispersive terms in the averaged Lagrangian method: turning to the complex amplitude of envelope. Nonlinear Dyn. 81, 383–393 (2015)

    Article  MathSciNet  Google Scholar 

  57. Mundarain, D.: About the non-relativistic limit of the phase velocity of matter waves. Eur. J. Phys. 38, 045402 (2017)

    Article  Google Scholar 

  58. Kivshar, Yu.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, San Diego (2003)

    Chapter  Google Scholar 

  59. Selesov, I.T., Kryvonos, Yu.G., Gandzha, I.S.: Spectral Methods in the Theory of Wave Propagation and Diffraction: Mathematical Methods and Applications. Springer, Singapore (2018)

  60. Lukomskii, V.P.: Modulational instability of gravity waves in deep water with allowance for nonlinear dispersion. JETP 81(2), 306–310 (1995)

    Google Scholar 

  61. Lukomsky, V.P., Gandzha, I.S.: Uniform expansions of periodic solutions to strongly non-linear evolution equations with odd polynomial non-linearity. Nonlinear Dyn. 32(4), 345–370 (2003)

    Article  MathSciNet  Google Scholar 

  62. Gandzha, I.S., Lukomsky, V.P.: Uniform expansions of periodic solutions for the third superharmonic resonance. Nonlinear Dyn. 37(3), 171–179 (2004)

    Article  MathSciNet  Google Scholar 

  63. Lü, X., Wang, J.-P., Lin, F.-H., Zhou, X.-W.: Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dyn. 91, 1249–1259 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan S. Gandzha.

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to the blessed memory of Dr. V. P. Lukomsky (14.01.1942—31.03.2008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedletsky, Y.V., Gandzha, I.S. A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains. Nonlinear Dyn 94, 1921–1932 (2018). https://doi.org/10.1007/s11071-018-4465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4465-x

Keywords

Navigation