Skip to main content

Advertisement

Log in

Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Modulational instability, as a mechanism of wave trains and soliton formation in biological system, is explored in the frame work of the new FitzHugh–Nagumo model. This model considered chain networks with memristive synaptic connection between adjacent neurons. This connection replaces the synaptic coupling and neurons bridged for signal exchange. From the physical law of electromagnetic induction, we interpret the traditional current term as magnetic flux variable. Magnetic flux is used to describe time-varying electromagnetic field setup in cells as a result of internal bioelectricity of the nervous system as well as when cells are exposed to external electromagnetic field. We reduced the whole network dynamical equations through multi-scale expansion to obtain a single differential–difference nonlinear equation of Schrödinger type. Linear stability is then performed with emphasis on memristive synaptic coupling. The conditions under which uniform plane waves propagating in the network become stable or unstable under small perturbation are calculated and plotted. Numerical experiments confirm our analytical predictions as the network supports localized mode excitations, spike-like, identified as quasi-periodic patterns, with some features of synchronization. It is confirmed that under strong electromagnetic radiation, the propagating waves encountered turbulent electrical activities, with patterns breakdown into a homogeneous state. This disordered state, collapse and instability of traveling pulse are monitored and analyzed using the sampled time series for membrane potential. It decreases to quiescent state under strong electromagnetic field. This could provide some guidance to understanding some neurodegenerative manifestations linked with high radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sobel, E., Davanipour, Z.: Electromagnetic field exposure may cause increased production of amyloid silly and eventually lead to Alzheimer’s disease. Neurology 47, 1594 (1996)

    Article  Google Scholar 

  2. Clarke, D., Sokoloff, L.: Basic neurochemistry: molecular, cellular and medical aspects. In: Siegel, G.J. (ed.) Lippincott-Raven, Philadelphia (1999)

  3. Johansen, C.: Exposure to electromagnetic field fields and risk of central nervous system disease in ultility workers. Epidemiology 11, 539 (2000)

    Article  Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    Article  Google Scholar 

  5. Fan, L., Quirui, L., Guo, H.: Simulating the electric activity of FitzHugh–Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69, 2169–2179 (2012)

    Article  MathSciNet  Google Scholar 

  6. Eteme, A.S., Tabi, C.B., Mohamadou, A.: Long-range patterns in Hindmarsh–Rose Networks. Commun. Nonlinear Sci. Numer. Simul. 43, 211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gu, H.G., Pan, B.B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81, 2107–2126 (2015)

    Article  MathSciNet  Google Scholar 

  8. Hilgetag, C.C., Kaiser, M.: Clustered organization of cortical connectivity. Neuroinformatics 2, 353 (2004)

    Article  Google Scholar 

  9. Stankovski, T., Pereira, T.: Coupling functions: universal insights into dynamical interaction mechanisms. Rev. Mod. Phys. 89, 045001 (2017)

    Article  MathSciNet  Google Scholar 

  10. Song, X.L., Wang, C.N., Ma, J., et al.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Tech. Sci. 58, 1007–14 (2015)

    Article  Google Scholar 

  11. Gosak, M., Marhl, M., Perc, M.: Pacemaker-guided noise-induced spatial periodicity in excitable media. Physica D 238, 506–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yilmaz, E., Ozer, M., Baysal, V., et al.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Article  Google Scholar 

  13. Wang, C.N., Guo, S.L., Xu, Y., et al.: Formation of autapse connected to neuron and its biological function. Complexity 2017, 5436737 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Lisi, A., Ciotti, M.T., Ledda, M., et al.: Exposure to 50 Hz electromagnetic radiation promote early maturation and differentiation in newborn rat cerebellar granule neurons. J. Cell. Phys. 204(2), 532–538 (2005)

    Article  Google Scholar 

  15. Xu, S.C., Zhou, Z., Zhang, L., et al.: Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res. 1311, 189–196 (2010)

    Article  Google Scholar 

  16. Takembo, C.N., Mvogo, A., Ekobena, H.P., et al.: Modulated wave formation in myocardial cells under electromagnetic radiation. Int. J. Mod. Phys. B 32, 1850165 (2018)

    Article  MathSciNet  Google Scholar 

  17. Zhao, R., Zhang, S.Z., Xu, Z.P., et al.: Studying gene expression profile of rat neuron exposed to 1800 MHz radiofrequency electromagnetic fields with cDNA microassay. Toxicology 235(3), 167–175 (2007)

    Article  Google Scholar 

  18. Masuda, H., Ushiyama, A., Takahashi, M., et al.: Effects of 915 MHz electromagnetic-field radiation in TEM cell on the blood-brain barrier and neurons in the rat brain. Radiat. Res. 172(1), 66–73 (2009)

    Article  Google Scholar 

  19. Wu, F.Q., Wang, C.N., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  20. Ge, M., Jia, Y., Xu, Y., et al.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–23 (2018)

    Article  Google Scholar 

  21. Xu, Y., Ying, H., et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2016)

    Article  Google Scholar 

  22. Zhang, G., Wang, C.: Investigation of dynamical behaviors of neurons driven by memristive synapse. Chaos Solitons Fractals 108, 15–24 (2018)

    Article  MathSciNet  Google Scholar 

  23. Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water Part 1. Theory J. Fluid Mech. 27, 417 (1967)

    Article  MATH  Google Scholar 

  24. Moukam, F.M., Inack, E.M., Yamakou, E.M.: Localized nonlinear excitations in diffusive Hindmarsh–Rose neural networks. Phys. Rev. E 89, 052919 (2014)

    Article  Google Scholar 

  25. Eteme, A.S., Tabi, C.B., Mohamadou, A.: Synchronized nonlinear patterns in electrically coupled Hindmarsh-Rose neural networks with long-range diffusive interactions. Chaos Solitons Fractals 104, 813–826 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. FitzHugh, R.: The biophysical society all rights reserved. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  27. Nagumo, J., Arimoto, S., Yoshizawa, S., et al.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  28. Kanamaru, T., Okabe, Y.: Associative memory retrival induced by influctuations in a pulsed neural network. Phys. Rev. E 62, 2629 (2000)

    Article  Google Scholar 

  29. Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  30. Mvogo, A., Takembo, C.N., Ekobena, H.P., et al.: Pattern formation in diffusive excitable systems under magnetic flow effects. Phys. Lett. A 381, 2264–2271 (2017)

    Article  MathSciNet  Google Scholar 

  31. Xu, Y., Jia, Y.: Synchronization between neurons coupled by memristor. Chaos Soliton Fractals 104, 435–442 (2017)

    Article  Google Scholar 

  32. Xu, F., Zhang, J., Fang, T., et al.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92, 1395–1402 (2018)

    Article  Google Scholar 

  33. Leon, J., Manna, M.: Multiscale analysis of discrete nonlinear evolution equations. J. Phys. A Math. Gen. 32, 2845 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leon, J., Manna, M.: Discrete instability in nonlinear lattices. Phys. Rev. Lett. 83, 2324 (1999)

    Article  Google Scholar 

  35. Tabi, C.B., Maïna, I., Mohamadou, A., et al.: Long-range intercellular \(Ca^{2+}\) wave patterns. Phys. A 435, 1–14 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Terman, D., Bose, A., Kopell, N.: Functinal reorganization in thalamocortical networks: Transition spindling and delta sleep rhythms. Proc. Natl. Acad. Sci. USA 93, 15417–15422 (1996)

    Article  Google Scholar 

  37. Battaglia, D., Brunel, N., Hansel, D.: Temporal decorrelation of collective oscillations in neural networks with local inhibition and long-range excitation. Phys. Rev. Lett. 99, 238106 (2007)

    Article  Google Scholar 

  38. Ribeiro, T.L., Copelli, : Deterministic excitable media under Poisson drive: power law responses, spiral waves, and dynamic range. Phys. Rev. E 77, 051911 (2008)

    Article  MathSciNet  Google Scholar 

  39. Lewis, T.: NIMBIOS Workshop on Synchrony, April 11 (2011)

  40. Morell, M.J.: Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295 (2011)

    Article  Google Scholar 

  41. Rubin, J.E., Terman, D.: High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J. Comput. Neurosci. 16, 211 (2004)

    Article  Google Scholar 

  42. Robinson, P.A., Rennie, C.J., Rowe, D.L.: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65, 041924 (2002)

    Article  Google Scholar 

  43. Ma, J., Wu, F., Hayat, T., et al.: Electromagnetic induction and radition-induced abnormality of wave propagation in excitable media. Physica A 486, 508–516 (2017)

    Article  MathSciNet  Google Scholar 

  44. Lv, M., Ma, J.: Multiple modes of electrical activities of neurons under electromagnetic radiation. Neurocomputing 205, 375–81 (2016)

    Article  Google Scholar 

  45. Swadlow, H.A., Gusev, A.G.: The impact of ’bursting’ thalamic impulses at a neocortical synapse. Nat. Neurosci. 4, 402 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Ntahkie Takembo.

Ethics declarations

Conflict of interest

The authors of this paper declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takembo, C.N., Mvogo, A., Ekobena Fouda, H.P. et al. Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn 95, 1067–1078 (2019). https://doi.org/10.1007/s11071-018-4616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4616-0

Keywords

Navigation