Skip to main content
Log in

Parameter sensitivity of cantilever beam with tip mass to parametric excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The sensitivity of the response of a parametrically excited cantilever beam with a tip mass to small variations in elasticity (stiffness) and the tip mass is performed. The governing equation of the first mode is derived, and method of multiple scales is used to determine the approximate solution based on the order of the expected variations. We demonstrate that the system can be designed so that small variations in either stiffness or tip mass can alter the type of bifurcation. Notably, we show that the response of a system designed for a supercritical bifurcation can change to yield a subcritical bifurcation with small variations in the parameters. Although such a trend is usually undesired, we argue that it can be used to detect small variations induced by fatigue or small mass depositions in sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dwivedy, S., Kar, R.: Non-linear dynamics of a slender beam carrying a lumped mass under principal parametric resonance with three-mode interactions. Int. J. Non-Linear Mech. 36(6), 927–945 (2001)

    Article  MATH  Google Scholar 

  2. Dwivedy, S., Kar, R.: Simultaneous combination and 1: 3: 5 internal resonances in a parametrically excited beam-mass system. Int. J. Non-Linear Mech. 38(4), 585–596 (2003)

    Article  MATH  Google Scholar 

  3. To, C.: The response of mast antenna structures to transient disturbances. Ph.D. thesis, University of Southampton (1979)

  4. To, C.: Vibration of a cantilever beam with a base excitation and tip mass. J. Sound Vib. 83(4), 445–460 (1982)

    Article  Google Scholar 

  5. Kim, K., Strganac, T.W.: Nonlinear responses of a cantilever wing with an external store. In: 44th AIAA Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, AIAA Paper, no. 2003-1708 (2003)

  6. Beran, P.S., Strganac, T.W., Kim, K., Nichkawde, C.: Studies of store-induced limit-cycle oscillations using a model with full system nonlinearities. Nonlinear Dyn. 37(4), 323–339 (2004)

    Article  MATH  Google Scholar 

  7. Abbas, L., Chen, Q., Marzocca, P., Milanese, A.: Non-linear aeroelastic investigations of store (s)-induced limit cycle oscillations. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 222(1), 63–80 (2008)

    Article  Google Scholar 

  8. Nayfeh, A., Hammad, B., Hajj, M.: Discretization effects on flutter aspects and control of wing/store configurations. J. Vib. Control 18(7), 1043–1055 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nayfeh, A.H., Ghommem, M., Hajj, M.R.: Normal form representation of the aeroelastic response of the goland wing. Nonlinear Dyn. 67(3), 1847–1861 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Na, S., Librescu, L.: Dynamic response of adaptive cantilevers carrying external stores and subjected to blast loading. J. Sound Vib. 231(4), 1039–1055 (2000)

    Article  Google Scholar 

  11. Shen, D., Ajitsaria, J., Choe, S.-Y., Kim, D.-J.: The optimal design and analysis of piezoelectric cantilever beams for power generation devices. MRS Online Proceedings Library Archive 888 (2005)

  12. Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osório, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20(5), 545–557 (2009)

    Article  Google Scholar 

  13. Kim, M., Hoegen, M., Dugundji, J., Wardle, B.L.: Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater. Struct. 19(4), 045023 (2010)

    Article  Google Scholar 

  14. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York (2011)

    Book  Google Scholar 

  15. Abdelkefi, A., Nayfeh, A., Hajj, M.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67(2), 1221–1232 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22(2), 025016 (2013)

    Article  Google Scholar 

  17. Friswell, M.I., Ali, S.F., Bilgen, O., Adhikari, S., Lees, A.W., Litak, G.: Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23(13), 1505–1521 (2012)

    Article  Google Scholar 

  18. Li, X., Bao, M., Yang, H., Shen, S., Lu, D.: A micromachined piezoresistive angular rate sensor with a composite beam structure. Sens. Actuators A Phys. 72(3), 217–223 (1999)

    Article  Google Scholar 

  19. Yang, H., Bao, M., Yin, H., Shen, S.: A novel bulk micromachined gyroscope based on a rectangular beam-mass structure. Sens. Actuators A Phys. 96(2), 145–151 (2002)

    Article  Google Scholar 

  20. Bashir, R.: Biomems: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56(11), 1565–1586 (2004)

    Article  Google Scholar 

  21. Vashist, S.K.: A review of microcantilevers for sensing applications. J. Nanotechnol. 3, 1–18 (2007)

    Google Scholar 

  22. Johnson, B.N., Mutharasan, R.: Biosensing using dynamic-mode cantilever sensors: a review. Biosens. Bioelectron. 32(1), 1–18 (2012)

    Article  Google Scholar 

  23. Dai, M.D., Eom, K., Kim, C.-W.: Nanomechanical mass detection using nonlinear oscillations. Appl. Phys. Lett. 95(20), 203104 (2009)

    Article  Google Scholar 

  24. Kacem, N., Arcamone, J., Perez-Murano, F., Hentz, S.: Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive nems gas/mass sensor applications. J. Micromech. Microeng. 20(4), 045023 (2010)

    Article  Google Scholar 

  25. Zhang, W., Baskaran, R., Turner, K.L.: Effect of cubic nonlinearity on auto-parametrically amplified resonant mems mass sensor. Sens. Actuators A Phys. 102(1), 139–150 (2002)

    Article  Google Scholar 

  26. Zhang, W., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens. Actuators A Phys. 122(1), 23–30 (2005)

    Article  Google Scholar 

  27. Younis, M.I., Nayfeh, A.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

    Article  MATH  Google Scholar 

  28. Meesala, V.C.: Modeling and analysis of a cantilever beam tip mass system, M.S. thesis, Virginia Tech. http://hdl.handle.net/10919/83378 (2018)

  29. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  30. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)

    MATH  Google Scholar 

  31. Pratiher, B., Dwivedy, S.K.: Nonlinear response of a vertically moving viscoelastic beam subjected to a fluctuating contact load. Acta Mechanica 218(1–2), 65–85 (2011)

    Article  MATH  Google Scholar 

  32. Pratiher, B.: Vibration control of a transversely excited cantilever beam with tip mass. Arch. Appl. Mech. 82(1), 31–42 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rezaee, M., Fekrmandi, H.: A theoretical and experimental investigation on free vibration vehavior of a cantilever beam with a breathing crack. Shock Vib. 19(2), 175–186 (2012)

    Article  Google Scholar 

  34. Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40(1), 61–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mohammad Younis for sharing his expertise and providing valuable suggestions. The first author would also like to thank Dr. Ayoub Boroujeni for providing useful insights on carbon fiber/epoxy resin composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vamsi C. Meesala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meesala, V.C., Hajj, M.R. Parameter sensitivity of cantilever beam with tip mass to parametric excitation. Nonlinear Dyn 95, 3375–3384 (2019). https://doi.org/10.1007/s11071-019-04760-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04760-w

Keywords

Navigation