Skip to main content
Log in

Theoretical modeling and numerical solution methods for flexible multibody system dynamics

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Flexible multibody system dynamics (MSD) is one of the hot spots and difficulties in modern mechanics. It provides a powerful theoretical tool and technical support for dynamic performance evaluation and optimization design of a large number of complex systems in many engineering fields, such as machinery, aviation, aerospace, weapon, robot and biological engineering. How to find an efficient accurate dynamics modeling method and its stable reliable numerical solving algorithm are the two core problems of flexible MSD. In this paper, the research status of modeling methods of flexible MSD in recent years is summarized first, including the selection of reference frames, the flexible body’s kinematics descriptions, the deductions of dynamics equation, the model reduction techniques and the modeling methods of the contact/collision, uncertainty and multi-field coupling problems. Then, numerical solution technologies and their latest developments of flexible MSD are discussed in detail. Finally, the future research directions of modeling and numerical computation of flexible MSD are briefly prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

    Google Scholar 

  2. Lemu, H.G.: Advances in numerical computation based mechanical system design and simulation. Adv. Manuf. 3(2), 130–138 (2015)

    Google Scholar 

  3. Tian, Q., Cheng, L., Pei, L., et al.: Advances and challenges in dynamics of flexible multibody systems. J. Dyn. Control 15(5), 385–405 (2017)

    Google Scholar 

  4. Wang, Q., Zhuang, F.F., Guo, Y.Y., et al.: Advances in the research on numerical methods for non-smooth dynamics of multibody systems. Adv. Mech. 43(1), 101–111 (2013)

    Google Scholar 

  5. Laflin, J.J., Anderson, K.S., Khan, I.M., et al.: Advances in the application of the divide-and-conquer algorithm to multibody system dynamics. J. Comput. Nonlinear Dyn. 9(4), 041003 (2014)

    Google Scholar 

  6. Wittenburg, J.: Dynamics of Systems of Rigid Bodies. B. G. Teubner, Stuttgart (1977)

    MATH  Google Scholar 

  7. Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill Book Company, New York (1983)

    Google Scholar 

  9. Schiehlen, W.: Multibody Systems Handbook. Springer, Berlin (1990)

    MATH  Google Scholar 

  10. Schiehlen, W.: Benchmark problems from vehicle dynamics. J. Mech. Sci. Technol. 29(7), 2601–2606 (2015)

    Google Scholar 

  11. Schiehlen, W.: Computational dynamics: theory and applications of multibody systems. Eur. J. Mech. A. Solids 25, 566–594 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Sys.Dyn. 1(2), 149–188 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (1988)

    MATH  Google Scholar 

  14. Huston, R.L., Liu, C.Q.: Advances in computational methods for multibody system dynamics. CMES Comput. Model. Eng. Sci. 10(2), 143–152 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Huston, R.L.: Multibody Dynamics. Butterworth–Heinemann, Boston (1990)

    MATH  Google Scholar 

  16. Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  17. Shabana, A.A.: ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(1), 109–112 (2015)

    MathSciNet  Google Scholar 

  18. Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10(2), 024504 (2015)

    Google Scholar 

  19. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42(3), 317–345 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Magalhaes, H., Ambrosio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction compatibility analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(3), 251–267 (2016)

    Google Scholar 

  22. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006)

    Google Scholar 

  23. Eberhard, P., Hu, B.: Advanced Contact Dynamics. Southeast University Press, Nanjing (2003)

    Google Scholar 

  24. Fehr, J., Eberhard, P.: Simulation process of flexible multibody systems with non-modal model order reduction techniques. Multibody Syst. Dyn. 25(3), 313–334 (2011)

    MATH  Google Scholar 

  25. Haug, E.J.: An index 0 differential-algebraic equation formulation for multibody dynamics: nonholonomic constraints. Mech. Based Des. Struct. Mach. 46(1), 38–65 (2018)

    Google Scholar 

  26. Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  27. Bauchau, O.A., Han, S.: Flexible joints in structural and multibody dynamics. Mech. Sci. 4(1), 65–77 (2013)

    Google Scholar 

  28. Bauchau, O.A.: Parallel computation approaches for flexible multibody dynamics simulations. J. Franklin Inst. Eng. Appl. Math. 347(1), 53–68 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht (2010)

    MATH  Google Scholar 

  30. Cuadrado, J., Dopico, D., Naya, M.A., et al.: Penalty, semi-recursive and hybrid methods for MBS real-time dynamics in the context of structural integrators. Multibody Syst. Dyn. 12(2), 117–132 (2004)

    MATH  Google Scholar 

  31. Masarati, Pierangelo, Morandini, Marco, Mantegazza, Paolo: An efficient formulation for general-purpose multibody / multiphysics analysis. J. Comput. Nonlinear Dyn. 9(4), 041001 (2014)

    Google Scholar 

  32. Masarati, P.: Robust static analysis using general-purpose multibody dynamics. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(2), 152–165 (2015)

    Google Scholar 

  33. Yoo, Wan-Suk: Automation for pick arrangement design of a cutting head attachment using RecurDyn/ProcessNet. Trans. KSME A 40(7), 685–692 (2016)

    Google Scholar 

  34. Yoo, Wan-Suk, Kim, Kee-Nam, Kim, Hyun-Woo, et al.: Developments of multibody system dynamics: computer simulations and experiments. Multibody Syst. Dyn. 18, 35–58 (2007)

    MATH  Google Scholar 

  35. Flores, P.: A new approach to eliminate the constraints violation at the position and velocity levels in constrained mechanical multibody systems. In: 5th European Conference on Mechanism Science (EUCOMES). Guimaraes, Portugal (2014)

    Google Scholar 

  36. McPhee, J., Schmitke, C., Redmond, S.: Dynamic modelling of mechatronic multibody systems with symbolic computing and linear graph theory. Math. Comput. Model. Dyn. Syst. 10(1), 1–23 (2004)

    MATH  Google Scholar 

  37. Fisette, P., Samin, J.C.: Teaching multibody dynamics from modeling to animation. Multibody Syst. Dyn. 13(3), 339–351 (2005)

    MATH  Google Scholar 

  38. Anderson, K.S.: Multibody computational dynamics-modeling involving scales from atoms to the motion of the planets. Int. J. Multiscale Comput. Eng. 1(2–3), 7–8 (2003)

    Google Scholar 

  39. Liu, Y.Z., Hong, J.Z., Yang, H.X.: Dynamics of Multi-rigid-body Systems. Higher Education Press, Beijing (1989)

    Google Scholar 

  40. Chen, B.: on Kane’s equation. Acta. Mech. Sin. 16(3), 311–315 (1984)

    MATH  Google Scholar 

  41. Hong, J.Z.: Computational Multibody System Dynamics. Higher Education Press, Beijing (1999)

    Google Scholar 

  42. Liu, C.S., Zhang, H.J., Zhao, Z., et al.: Impact-contact dynamics in a disc-ball system. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2152), 20120741 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Lu, Y.F.: Dynamics of Flexible Multibody System. Higher Education Press, Beijing (1996)

    Google Scholar 

  44. Huston, R.L., Liu, Y.W.: Multibody System Dynamics: Upper Volume. Tianjin University Press, Tianjin (1987)

    Google Scholar 

  45. Huston, R.L., Liu, Y.W.: Multibody System Dynamics: Lower Volume. Tianjin University Press, Tianjin (1991)

    Google Scholar 

  46. Huang, W.H., Shao, C.X.: Dynamics of Flexible Multibody System. Science Press, Beijing (1996)

    Google Scholar 

  47. Hu, H.Y., Tian, Q., Liu, C.: Computational dynamics of soft machines. Acta. Mech. Sin. 33(3), 516–528 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Hu, H.Y., Tian, Q., Zhang, W., et al.: Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Adv. Mech. 43(4), 390–414 (2013)

    Google Scholar 

  49. Rui, X.T., Yun, L.F., Lu, Y.Q., et al.: Transfer Matrix Method of Multibody System and its Application. Science Press, Beijing (2008)

    Google Scholar 

  50. Rui, X.T., Abbas, L.K., Yang, F.F., et al.: Flapwise vibration computations of coupled helicopter rotor/fuselage: application of multibody system dynamics. AIAA J. 56(2), 818–835 (2018)

    Google Scholar 

  51. Rui, X.T., Gu, J.J., Zhang, J.S., et al.: Visualized simulation and design method of mechanical system dynamics based on transfer matrix method for multibody systems. Adv. Mech. Eng. 9(8), 1687814017714729 (2017)

    Google Scholar 

  52. Liu, J.Y., Pan, K.Q.: Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system. Aerosp. Sci. Technol. 52, 102–114 (2016)

    Google Scholar 

  53. Liu, J.Y., Lu, H.: Nonlinear formulation for flexible multibody system applied with thermal load. In: ASME Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 5, PTS A-C, pp. 1173–1181 (2007)

  54. Qi, Z.H.: Multibody System Dynamics. Science Press, Beijing (2008)

    Google Scholar 

  55. Qi, Z.H., Wang, G., Zhang, Z.G.: Contact analysis of deep groove ball bearings in multibody systems. Multibody Syst. Dyn. 33(2), 115–141 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Magnus K.: Drehbewegungen starrer Korper im zentralen Schwerefeld. In: Proceedings of the 11th International Congress of Theoretical and Applied Mechanics, Munich, Germany (1977)

  57. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)

    Google Scholar 

  58. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)

    Google Scholar 

  59. Masarati, P.: Adding kinematic constraints to purely differential dynamics. Comput. Mech. 47(2), 187–203 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Masarati, P.: Constraint stabilization of mechanical systems in ordinary differential equations form. Proc. IMechE Part K: J. Multi-body Dyn. 225(1), 12–31 (2011)

    Google Scholar 

  61. Arnold, M., Burgermeister, B., Führer, C., et al.: Numerical methods in vehicle system dynamics: state of the art and current developments. Veh. Syst. Dyn. 49(7), 1159–1207 (2011)

    Google Scholar 

  62. Pardo, A.C., Goulos, I., Pachidis, V.: Modelling and analysis of coupled flap-lag-torsion vibration characteristics helicopter rotor blades. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 231(10), 1804–1823 (2017)

    Google Scholar 

  63. Cheng, L., Wang, T.S., Li, J.F.: Attitude dynamics and control of a flexible multi-body satellite. J. Tsinghua Univ. 45(11), 1506–1509 (2005)

    Google Scholar 

  64. Rui, X.T., Kreuzer, E., Rong, B., et al.: Discrete time transfer matrix method for dynamics of multibody system with flexible beams moving in space. Acta. Mech. Sin. 28(2), 490–504 (2012)

    MathSciNet  MATH  Google Scholar 

  65. Sharifnia, M., Akbarzadeh, A.: A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints. Multibody Syst. Dyn. 40, 261–285 (2017)

    MathSciNet  MATH  Google Scholar 

  66. Sharifnia, M., Akbarzadeh, A.: Dynamics and vibration of a 3-PSP parallel robot with flexible moving platform. J. Vib. Control 22(4), 1095–1116 (2016)

    MathSciNet  Google Scholar 

  67. Ambrósio, Jorge, Pombo, João, Antunes, Pedro, et al.: PantoCat statement of method. Veh. Syst. Dyn. 53(3), 314–328 (2015)

    Google Scholar 

  68. Betsch, P., Becker, C., Franke, M., et al.: A comparison of DAE integrators in the context of benchmark problems for flexible multibody dynamics. J. Mech. Sci. Technol. 29(7), 2653–2661 (2015)

    Google Scholar 

  69. Rong, B., Rui, X.T., Wang, G.P., et al.: Discrete time transfer matrix method for dynamic modeling of complex spacecraft with flexible appendages. J. Comput. Nonlinear Dyn. 6(1), 011013 (2011)

    Google Scholar 

  70. Rong, B., Rui, X.T., Wang, G.P., et al.: New efficient method for dynamics modeling and simulation of flexible multibody systems moving in plane. Multibody Syst. Dyn. 24(2), 181–200 (2010)

    MathSciNet  MATH  Google Scholar 

  71. Sarker, M., GeoffRideout, D., Butt, S.D.: Dynamic model for 3D motions of a horizontal oilwell BHA with wellbore stick-slip whirl interaction. J. Petrol. Sci. Eng. 157, 482–506 (2017)

    Google Scholar 

  72. Khurelbaatar, T., Kim, K., Kim, Y.H.: A cervico-thoraco-lumbar multibody dynamic model for the estimation of joint loads and muscle forces. J. Biomech. Eng. 137(11), 111001 (2015)

    Google Scholar 

  73. Wu, J.Z., Dong, R.G., Warren, C.M., et al.: Analysis of the effects of surface stiffness on the contact interaction between a finger and a cylindrical handle using a three-dimensional hybrid model. Med. Eng. Phys. 36(7), 831–841 (2014)

    Google Scholar 

  74. Pramudita, J.A., Kikuchi, S., Tanabe, Y.: Numerical analysis of vehicle occupant responses during rear impact using a human body model. Appl. Mech. Mater. 566, 480–485 (2014)

    Google Scholar 

  75. Drag, Ł.: Application of dynamic optimisation to the trajectory of a cable-suspended load. Nonlinear Dyn. 84, 1637–1653 (2016)

    MathSciNet  Google Scholar 

  76. Sun, H.L., Wu, H.T., Shao, B., et al.: The finite segment method for recursive approach to flexible multibody dynamics. In: 2nd International Conference on Information and Computing Science. Manchester, England (2009)

  77. Wang, G.P., Rong, B., Tao, L., et al.: Riccati discrete time transfer matrix method for dynamics of underwater towed system. J. Appl. Mech. 79(4), 041004 (2012)

    Google Scholar 

  78. Wu, L., Sun, Y.R., Huang, B., et al.: Dynamic modeling and performance analysis of a hose-drogue aerial refueling system based on the Kane equation. In: IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China (2016)

  79. Gao, Q.Y., Zhang, Q.B., Peng, W.Y., et al.: Dynamics modelling and ground test of space nets. In: 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). England, London (2016)

  80. Ma, H.W., Wang, C.W.: Studying and simulation analysis for rubber track of rescue robot. Appl. Mech. Mater. 457–458, 643–648 (2014)

    Google Scholar 

  81. Bak, M.K., Hansen, M.R.: Analysis of offshore knuckle boom crane-part one: modeling and parameter identification. Model. Identif. Control 34(4), 157–174 (2013)

    Google Scholar 

  82. Lipinski, K., Kneba, Z.: Rigid finite element modeling for identification of vibrations in elastic rod driven by a DC-motor supplied from a thyristor rectifier. In: 5th International Conference on Mechatronic Systems and Materials. Vilnius, Lithuania (2009)

  83. Szczotka, M.: A modification of the rigid finite element method and its application to the J-lay problem. Acta Mech. 220(1–4), 183–198 (2011)

    MATH  Google Scholar 

  84. Xie, D., Jian, K.L., Wen, W.B.: An element-free Galerkin approach for rigid-flexible coupling dynamics in 2D state. Appl. Math. Comput. 310(1), 149–168 (2017)

    MathSciNet  MATH  Google Scholar 

  85. Ibáñez, D.I., Orden, J.C.: García, Galerkin meshfree methods applied to the nonlinear dynamics of flexible multibody systems. Multibody Syst. Dyn. 25(2), 203–224 (2011)

    MathSciNet  Google Scholar 

  86. Du, C.F., Zhang, D.G., Hong, J.Z.: A meshfree method based on radial point interpolation method for the dynamic analysis of rotating flexible beams. Chin. J. Theoret. Appl. Mech. 47(2), 279–288 (2015)

    Google Scholar 

  87. Fan, J.H., Zhang, D.G.: Bezier interpolation method for the dynamics of rotating flexible cantilever beam. Acta Phys. Sin. 63(15), 154501 (2014)

    Google Scholar 

  88. Kerdjoudj, M., Amirouche, F.M.L.: Implementation of the boundary element method in the dynamics of flexible bodies. Int. J. Numer. Meth. Eng. 39(2), 321–354 (1996)

    MATH  Google Scholar 

  89. Escalona José, L., Sugiyama, H., Shabana, A.A.: Modelling of structural flexiblity in multibody railroad vehicle systems. Veh. Syst. Dyn. 51(7), 1027–1058 (2013)

    Google Scholar 

  90. Hamper, M.B., Zaazaa, K.E., Shabana, A.A.: Modeling railroad track structures using the finite segment method. Acta Mech. 223(8), 1707–1721 (2012)

    MATH  Google Scholar 

  91. Hamper, M.B., Recuero, A.M., Escalona, J.L., et al.: Use of finite element and finite segment methods in modeling rail flexibility: a comparative study. J. Comput. Nonlinear Dynam 7(4), 041007 (2012)

    Google Scholar 

  92. Arbatani, S., Callejo, A., Kovecses, J., et al.: An approach to directional drilling simulation: finite element and finite segment methods with contact. Comput. Mech. 57(6), 1001–1015 (2016)

    MathSciNet  MATH  Google Scholar 

  93. Lozovskiy, A., Dubois, F.: The method of a floating frame of reference for non-smooth contact dynamics. Eur. J. Mech. A. Solids 58, 89–101 (2016)

    MathSciNet  MATH  Google Scholar 

  94. Wu, T.H., Liu, Z.Y., Hong, J.Z.: A recursive formulation based on corotational frame for flexible planar beams with large displacement. J. Central South Univ. 25(1), 208–217 (2018)

    Google Scholar 

  95. Le, Thanh-Nam, Battini, Jean-Marc, Hjiaj, Mohammed: Corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled open cross-sections. Comput. Struct. 134(1), 112–127 (2014)

    Google Scholar 

  96. Le, Thanh-Nam, Battini, Jean-Marc, Hjiaj, Mohammed: A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures. Comput. Methods Appl. Mech. Eng. 269(1), 538–565 (2014)

    MathSciNet  MATH  Google Scholar 

  97. Verlinden, O., Huynh, H.N., Kouroussis, G., et al.: Modelling of flexible bodies with minimal coordinates by means of the corotational formulation. Multibody Syst. Dyn. 42(4), 495–514 (2018)

    MathSciNet  MATH  Google Scholar 

  98. Boer, S.E., Aarts, R.G.K.M., Meijaard, J.P., et al.: A nonlinear two-node superelement for use in flexible multibody systems. Multibody Syst. Dyn. 31(4), 405–431 (2014)

    MathSciNet  MATH  Google Scholar 

  99. Chebbi, J., Dubanchet, V., Gonzalez, J.A.P.: Linear dynamics of flexible multibody systems A system-based approach. Multibody Syst. Dyn. 41(1), 75–100 (2017)

    MathSciNet  MATH  Google Scholar 

  100. Olshevskiy, A., Dmitrochenko, O., Yang, H.I., et al.: Absolute nodal coordinate formulation of tetrahedral solid element. Nonlinear Dyn. 88(4), 2457–2471 (2017)

    MATH  Google Scholar 

  101. Pappalardo, C.M., Zhang, Z.G., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)

    Google Scholar 

  102. Tian, Q., Zhang, Y.Q., Chen, L.P.: Advances in the absolute nodal coordinate method for the flexible multibody dynamics. Adv. Mech. 40(2), 189–202 (2010)

    Google Scholar 

  103. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)

    Google Scholar 

  104. Lee, S.H., Park, T.W., Seo, J.H., Yoon, J.W., Jun, K.J.: The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 223–237 (2008)

    MATH  Google Scholar 

  105. Yu, H.D., Zhao, C.Z., Zheng, H.: A higher-order variable cross-section viscoelastic beam element via ANCF for kinematic and dynamic analyses of two-link flexible manipulators. Int. J. Appl. Mech. 09, 1750116 (2017)

    Google Scholar 

  106. Abbas, L.K., Rui, X.T., Marzocca, P.: Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 33(2), 163–178 (2015)

    MathSciNet  MATH  Google Scholar 

  107. Hu, W., Tian, Q., Hu, H.Y.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)

    MathSciNet  Google Scholar 

  108. Liu, Z.Y., Hong, J.Z.: Research and prospect of flexible multi-body systems dynamics. Chin. J. Comput. Mech. 25(4), 411–416 (2008)

    MATH  Google Scholar 

  109. Liu, A.Q., Liew, K.M.: Non-linear substructure approach for dynamic analysis of rigid flexible multibody systems. Comput. Methods Appl. Mech. Eng. 114, 379–390 (1994)

    Google Scholar 

  110. Wu, S.C., Haug, E.J.: Geometric non-linear substructuring for dynamics of flexible mechanical systems. Int. J. Numer. Methods Eng. 26, 2211–2226 (1998)

    MATH  Google Scholar 

  111. Das, M., Barut, A., Madenci, E.: Analysis of multibody systems experiencing large elastic deformations. Multibody Syst. Dyn. 23(1), 1–31 (2010)

    MathSciNet  MATH  Google Scholar 

  112. Garcia-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect Part 1: a correction in the floating frame of reference formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 219(2), 187–202 (2005)

    Google Scholar 

  113. Liu, J.Y., Li, B., et al.: Rigid-flexible dynamics of elastic beam undergoing large motion. Acta. Mech. Sin. 38(2), 276–282 (2006)

    Google Scholar 

  114. You, C.L.: Study on modeling theory for rigid-flexible coupling dynamics of multibody systems with large deformations. University of Shanghai Jiaotong (2006)

  115. Masarati, P., Morandini, M.: Intrinsic deformable joints. Multibody Syst. Dyn. 23(4), 361–386 (2010)

    MathSciNet  MATH  Google Scholar 

  116. Bauchau, O.A., Li, L.H., Masarati, P., et al.: Tensorial deformation measures for flexible joints. J. Comput. Nonlinear Dyn. 6(3), 031002 (2011)

    Google Scholar 

  117. Santini, P., Gasbarri, P.: General background and approach to multibody dynamics for space applications. Acta Astronaut. 64(11–12), 1224–1251 (2009)

    Google Scholar 

  118. Paraskevopoulos, E., Potosakis, N., Natsiavas, S.: An augmented Lagrangian formulation for the equations of motion of multibody systems subject to equality constraints. Proc. Eng. 199, 747–752 (2017)

    Google Scholar 

  119. Bascetta, L., Ferretti, G., Scaglioni, B.: Closed form Newton–Euler dynamic model of flexible manipulators. Robotica 35(5), 1006–1030 (2017)

    Google Scholar 

  120. Scaglioni, Bruno, Bascetta, Luca, Baur, Marco: Closed-form control oriented model of highly flexible manipulators. Appl. Math. Model. 52, 174–185 (2017)

    MathSciNet  Google Scholar 

  121. Boyer, F., Porez, M., Morsli, F., et al.: Locomotion dynamics for bio-inspired robots with soft appendages: application to flapping flight and passive swimming. J. Nonlinear Sci. 27(4), 1121–1154 (2017)

    MathSciNet  MATH  Google Scholar 

  122. Xu, L., Li, D.Y., Mo, W.W., et al.: Random response analysis for flexible blade of a wind turbine based on nonlinear aero-elastic coupled model. J. Vib. Shock 34(10), 20–27 (2015)

    Google Scholar 

  123. Richard, M.J., Huang, M.Z., Bouazara, M.: Computer aided analysis and optimal design of mechanical systems using vector-network techniques. Appl. Math. Comput. 157(1), 175–200 (2004)

    MathSciNet  MATH  Google Scholar 

  124. Richard, M.J., McPhee, J.J., Anderson, R.J.: Computerized generation of motion equations using variational graph-theoretic methods. Appl. Math. Comput. 192(1), 135–156 (2007)

    MathSciNet  MATH  Google Scholar 

  125. Hao, L., Jinyang, L.: Parallel manipulator dynamics with thermal strain. Chin. J. Appl. Mech. 24(3), 391–395 (2007)

    Google Scholar 

  126. Hu, M., Kong, F., Chen, W.H., et al.: Multi-body dynamics of repeated fold-unfold and lock-unlock solar array. Chin. J. Space Sci. 34(4), 489–496 (2014)

    Google Scholar 

  127. Haug, E.J.: Simulation of spatial multibody systems with friction. Mech. Based Des. Struct. Mach. 46(3), 347–375 (2018)

    Google Scholar 

  128. Tang, D., Bao, S.Y., Lv, B.B., et al.: A derivative-free algorithm for nonlinear equations and its applications in multibody dynamics. J. Algorithm Comput. Technol. 12(1), 30–42 (2018)

    MathSciNet  Google Scholar 

  129. Siqueira, T.M., Coda, H.B.: Total Lagrangian FEM formulation for nonlinear dynamics of sliding connections in viscoelastic plane structures and mechanisms. Finite Elem. Anal. Des. 129, 63–77 (2017)

    MathSciNet  Google Scholar 

  130. Bauchau, O.A., Betsch, P., Cardona, A., et al.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37(1), 29–48 (2016)

    MathSciNet  MATH  Google Scholar 

  131. Rui, X.T., Rong, B., Wang, G.P., et al.: Discrete time transfer matrix method for dynamics analysis of complex weapon systems. Sci. China Technol. Sci. 54(5), 1061–1071 (2011)

    MATH  Google Scholar 

  132. Rui, X.T., Bestle, D., Zhang, J.S., et al.: A new version of transfer matrix method for multibody systems. Multibody Syst. Dyn. 38(2), 137–156 (2016)

    MathSciNet  MATH  Google Scholar 

  133. Rong, B.: Study on transfer matrix method for dynamics of controlled multibody systems, Ph.D. Dissertation, Nanjing: Nanjing University of Science and Technology (2011)

  134. Rong, B., Rui, X.T., Tao, L.: Discrete time transfer matrix method for launch dynamics modeling and cosimulation of self-propelled artillery system. J. Appl. Mech. 80(1), 011008 (2013)

    Google Scholar 

  135. Rong, B.: Efficient dynamics analysis of large-deformation flexible beams by using the absolute nodal coordinate transfer matrix method. Multibody Syst. Dyn. 32(4), 535–549 (2014)

    MathSciNet  MATH  Google Scholar 

  136. Rong, B., Lu, K., Rui, X.T., et al.: Nonlinear dynamics analysis of pipe conveying fluid by Riccati absolute nodal coordinate transfer matrix method. Nonlinear Dyn. 92(2), 699–708 (2018)

    Google Scholar 

  137. Rong, B., Rui, X.T., Lu, K., et al.: Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system. Mech. Syst. Signal Process. 104(1), 589–606 (2018)

    Google Scholar 

  138. Rong, B., Rui, X.T., Tao, L.: Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism. Multibody Syst. Dyn. 28(4), 291–311 (2012)

    MathSciNet  Google Scholar 

  139. Rong, B., Rui, X.T., Yang, F.F., et al.: Discrete time transfer matrix method for dynamics of multibody system with real-time control. J. Sound Vib. 329(6), 627–643 (2010)

    Google Scholar 

  140. Rong, B., Rui, X.T., Wang, G.P., et al.: Dynamic modeling and H\(\infty \) independent modal space vibration control of laminate plates. Sci.China Phys. Mech. Astron. 54(9), 1638–1650 (2011)

    Google Scholar 

  141. Schilder, J., Ellenbroek, M., de Boer, A.: Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures. In: IOP Conference Series: Materials Science and Engineering, Vol. 276, pp. 012029 (2017)

    Google Scholar 

  142. Schilder, J., Ellenbroek, M., de Boer, A.: Recursive solution procedures for flexible multibody systems: comparing condensation and transfer matrix methods. 2017. Paper presented at 8th ECCOMAS Thematic Conference on Multibody Dynamics 2017, Prague, Czech Republic

  143. Krauss, R.: Infinite-Dimensional Pole-optimization control design for flexible structures using the transfer matrix method. J. Comput. Nonlinear Dyn. 9(1), 011004 (2013)

    Google Scholar 

  144. Krauss, R., Okasha, M.: Discrete-time transfer matrix modeling of flexible robots under feedback control. In: American Control Conference (ACC), Washington DC (2013)

  145. Abbas, L.K., Zhou, Q.B., Rui, X.T.: Frequency determination of beams coupled by a double spring-mass system using transfer matrix method of linear multibody systems. In: 5th International Symposium on Knowledge Acquisition and Modeling (KAM). England, London (2015)

  146. Hendy, H., Rui, X., Zhou, Q., et al.: Transfer matrix method for multibody systems of TITO system control applications. Appl. Mech. Mater. 530–531, 1043–1048 (2014)

    Google Scholar 

  147. He, B., Rui, X.T., Zhang, H.L.: Transfer matrix method for natural vibration analysis of tree system. Math. Probl. Eng. 393204 (2012)

  148. Shen, Z.Y., Yuan, Y., Yuan, H.T., et al.: Multibody dynamics method for immersed tunnel subjected to longitudinal seismic loading. In: 11th World Congress on Computational Mechanics (WCCM)/5th European Conference on Computational Mechanics (ECCM)/6th European Conference on Computational Fluid Dynamics (ECFD), Barcelona, Spain (2014)

  149. Srensen, R., Iversen, M.R., Zhang, X.: Dynamic modeling of flexible robot manipulators: acceleration-based discrete time transfer matrix method. In: Bai S., Ceccarelli M. (eds) Recent Advances in Mechanism Design for Robotics. Mechanisms and Machine Science, vol 33. Springer, Cham (2015)

  150. Šalinić, S., Bošković, G., Nikolić, M.: Dynamic modelling of hydraulic excavator motion using Kane’s equations. Autom. Constr. 44, 56–62 (2014)

    Google Scholar 

  151. Orsino, R.M.M., Coelho, T.A.H., Pesce, C.P.: Analytical mechanics approaches in the dynamic modelling of Delta mechanism. Robotica 33(4), 953–973 (2015)

    Google Scholar 

  152. Zhong, Y.W., Wang, L.M.: A method to establish the dynamic models of multibody system based on Kane’s equations. In: 2nd International Conference on Modelling, Identification and Control (MIC). France, Paris (2015)

  153. Pishkenari, H.N., Yousefsani, S.A., Gaskarimahalle, A.L., et al.: A fresh insight into Kane’s equations of motion. Robtica 35(3), 498–510 (2017)

    Google Scholar 

  154. Klausen, K., Fossen, T.I., Johansen, T.A.: Nonlinear control with swing damping of a multirotor UAV with suspended load. J. Intell. Robot. Syst. 88(2–4), 379–394 (2017)

    Google Scholar 

  155. Zhao, J., Zhao, R., Xue, Z.: A new modeling method for flexible multibody systems. Multibody Syst. Dyn. 35, 179–190 (2015)

    MathSciNet  MATH  Google Scholar 

  156. Pestel, E.C., Leckie, F.A.: Matrix Method in Elastomechanics. McGraw-Hill Book Company, New York (1963)

    Google Scholar 

  157. Horner, G.C., Pilkey, W.D.: The riccati transfer matrix method. ASME J. Mech. Des. 1(2), 297–302 (1978)

    Google Scholar 

  158. Kumar, A.S., Sankar, T.S.: A new transfer matrix method for response analysis of large dynamic systems. Comput. Struct. 23(4), 545–552 (1986)

    MATH  Google Scholar 

  159. Loewy, R.G., Bhntani, N.: Combined finite element-transfer matrix method. J. Sound Vib. 226(5), 1048–1052 (1999)

    Google Scholar 

  160. Wang, L., Hofmann, V., Bai, F.S., et al.: Modeling of coupled longitudinal and bending vibrations in a sandwich type piezoelectric transducer utilizing the transfer matrix method. Mech. Syst. Signal Process. 108, 216–237 (2018)

    Google Scholar 

  161. Kim, J.S., Park, N., Lee, H.: Vibration analysis of a planetary gear system based on the transfer matrix method. J. Mech. Sci. Technol. 30(2), 611–621 (2016)

    Google Scholar 

  162. Bozdogan, K.B., Ozturk, D.: Vibration Analysis of Asymmetric-Plan Frame Buildings Using Transfer Matrix Method. Math. Comput. Appl. 15(2), 279–288 (2010)

    MATH  Google Scholar 

  163. Wickenheiser, A.M., Reissman, T.: Generalized eigensolution to piecewise continuous distributed-parameter models of piezoelectric energy harvesters using the transfer matrix method. In: 4th Annual Meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS). Scottsdale, AZ (2011)

  164. Boiangiu, M., Boiangiu, G.: Improved transfer matrix method for the study of vibrations of the centrifuges with the basket in console. Mater. Res. Appl. 875–877: 2067 (2014)

  165. Zhang, J.S.: Study on some issues of the new version of transfer matrix method for multibody systems, Ph.D. Dissertation, Nanjing: Nanjing University of Science and Technology (2017)

  166. Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014)

    MathSciNet  MATH  Google Scholar 

  167. Shi, Y.D., Wang, D.S.: Dynamics analysis of multibody system using Gauss constraint. Mech. Eng. 32(6), 22–26 (2010)

    Google Scholar 

  168. Liu, Y.Z.: Dynamic modeling of multi-body system based on Gauss’s principle. Chin. J. Theoret. Appl. Mech. 46(6), 940–945 (2014)

    Google Scholar 

  169. Hao, M.W., Ye, Z.Y.: Gauss principle of least constraint of simple flexible body and multi-flexible body dynamics. J Guangxi Univ. Nat. Sci. Ed. 36(2), 195–204 (2011)

    Google Scholar 

  170. Khalil, W., Boyer, F., Morsli, F.: General dynamic algorithm for floating base tree structure robots with flexible joints and links. J. Mech. Robot. 9(3), 031003 (2017)

    Google Scholar 

  171. Muller, A.: Screw and Lie group theory in multibody dynamics recursive algorithms and equations of motion of tree-topology systems. Multibody Syst. Dyn. 42(2), 219–248 (2018)

    MathSciNet  Google Scholar 

  172. Tong, M.M.: A recursive algorithm for solving the generalized velocities from the momenta of flexible multibody systems. J. Comput. Nonlinear Dyn. 5(4), 041002 (2010)

    Google Scholar 

  173. Boyer, F., Ali, S.: Recursive inverse dynamics of mobile multibody systems with joints and wheels. IEEE Trans. Rob. 27(2), 215–228 (2011)

    Google Scholar 

  174. Gattringer, H., Oberhuber, B., Mayr, J., et al.: Recursive methods in control of flexible joint manipulators. Multibody Syst. Dyn. 32(1), 117–131 (2014)

    MathSciNet  MATH  Google Scholar 

  175. Chadaj, K., Malczyk, P., Fraczek, J.: A parallel recursive Hamiltonian algorithm for forward dynamics of serial kinematic chains. IEEE Trans. Rob. 33(3), 647–660 (2017)

    MATH  Google Scholar 

  176. Sun, H.L., Wu, H.T., Zhou, Y.J.: A transfer matrix method based on spatial operator algebra theory. Mech. Sci. Technol. 29(9), 1126–1131 (2010)

    Google Scholar 

  177. Tian, F.Y., Wu, H.T., Zhao, D.X.: Hybrid dynamics of flexible multibody system and real time simulation. China Mech. Eng. 21(1), 6–12 (2010)

    Google Scholar 

  178. Hu, J.C., Wang, T.S.: A recursive absolute nodal coordinate formulation with O(n) algorithm complexity. Chin. J. Theoret. Appl. Mech. 48(5), 1172–1183 (2016)

    MathSciNet  Google Scholar 

  179. Liu, F., Zhang, J.R., Hu, Q.: A modified constraint force algorithm for flexible multibody dynamics with loop constraints. Nonlinear Dyn. 90(3), 1885–1906 (2017)

    MathSciNet  MATH  Google Scholar 

  180. Qi, Z.H., Xu, Y.S., Luo, X.M.: Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Multibody Syst. Dyn. 24(2), 133–166 (2010)

    MathSciNet  MATH  Google Scholar 

  181. Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to moving base. J. Guid. 10(2), 139–151 (1987)

    Google Scholar 

  182. Zhang, W.: Numerical analysis of dynamic stiffening in flexible multibody systems, Master Dissertation. Dalian University of Technology, Dalian (2002)

  183. Qi, ZhH, Chen, L., Zhang, W.: Belated initial stress method for dynamic stiffening in multibody systems. J. Dalian Univ. Technol. 42(1), 32–35 (2002)

    MATH  Google Scholar 

  184. Sanborn, G., Choi, J., Shik, Yoon J., et al.: Systematic integration of finite element methods into multibody dynamics considering hyperelasticity and plasticity. J. Comput. Nonlinear Dyn. 9(4), 041012 (2014)

    Google Scholar 

  185. Ambrósio, J.A.C.: Dynamics of structures undergoing gross motion and nonlinear deformations: A multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)

    MATH  Google Scholar 

  186. Sugiyama, H., Shabana, A.A.: Analysis of plastic deformations in multibody system dynamics. In: 7th International Conference on Computational Structures Technology/4th International Conference on Engineering Computational Technology. Portugal, Lisbon (2004)

  187. Orzechowski, Grzegorz, Frączek, Janusz: Volumetric locking suppression method for nearly incompressible nonlinear elastic multi-layer beams using ANCF elements. J. Theoret. Appl. Mech. 55(3), 977–990 (2017)

    Google Scholar 

  188. Pan, W., Haug, E.J.: Dynamic simulation of general flexible multibody systems. Mech. Struct. Mach. 27(2), 217–251 (1999)

    Google Scholar 

  189. Maqueda, L.G., Shabana, A.A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. Multibody Syst. Dyn. 18(3), 375–396 (2007)

    MATH  Google Scholar 

  190. Maqueda, L.G., Mohamed, A.N.A., Shabana, A.A.: Use of general nonlinear material models in beam problems: application to belts and rubber chains. J. Comput. Nonlinear Dyn. 5(2), 021003 (2010)

    Google Scholar 

  191. Mohamed, A.N.A., Shabana, A.A.: A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody Syst. Dyn. 26(1), 57–79 (2011)

    MathSciNet  MATH  Google Scholar 

  192. Zhao, C.Z., Yu, H.D., Lin, Z.Q., et al.: Dynamic model and behavior of viscoelastic beam based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(1), 84–96 (2015)

    Google Scholar 

  193. Shi, W.: Dynamic investigation on elasto-plastic multi-body system, Master Dissertation. Shanghai Jiao Tong University, Shanghai (2010)

  194. Cao, D., Zhao, Z., Ren, G., et al: Dynamic modeling of a viscoelastic body in a multibody system. J. Tsinghua Univ. 52(4): 486-488, 493 (2012)

  195. Orzechowski, G., Fraczek, J.: Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF. Nonlinear Dyn. 82(1–2), 451–464 (2015)

    MathSciNet  Google Scholar 

  196. Gebhardt, C.G., Hofmeister, B., Hente, C., et al.: Nonlinear dynamics of slender structures: a new object-oriented framework. Comput. Mech. 63(2), 219–252 (2019)

    MathSciNet  MATH  Google Scholar 

  197. Tran, D.M.: Component mode synthesis methods using interface modes. Appl. Struct. Cyclic Symmet. Comput. Struct. 79, 209–222 (2001)

    Google Scholar 

  198. Mikheev, G., Pogorelov, D., Dmitrochenko, O., et al: Flexible multibody approaches for dynamical simulation of beam structures in drilling. In: ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC) (2014)

  199. Gerstmayr, J., Ambrosio, J.: Component mode synthesis with constant mass and stiffness. Int. J. Numer. Meth. Eng. 73, 1518–1546 (2008)

    MATH  Google Scholar 

  200. O’Shea, J.J., Jayakumar, P., Mechergui, D., et al.: Reference conditions and substructuring techniques in flexible multibody system dynamics. J. Comput. Nonlinear Dyn. 13(4), 041007 (2018)

    Google Scholar 

  201. Kobayashi, N., Wago, T., Sugawara, Y.: Reduction of system matrices of planar beam in ANCF by component mode synthesis method. Multibody Syst. Dyn. 26, 265–281 (2011)

    MATH  Google Scholar 

  202. Sun, D.Y., Chen, G.P., Shi, Y., et al.: Model reduction of a flexible multibody system with clearance. Mech. Mach. Theory 85, 106–115 (2015)

    Google Scholar 

  203. Lozovskiy, A.: The modal reduction method for multi-body dynamics with non-smooth contact. Int. J. Numer. Meth. Eng. 98, 937–959 (2014)

    MathSciNet  MATH  Google Scholar 

  204. Ricci, S., Troncossi, M., Rivola, A.: Model reduction of the flexible rotating crankshaft of a motorcycle engine cranktrain. Int. J. Rotat. Mach. 143523 (9 pp.) (2011)

  205. Kim, J.G., Han, J.B., Lee, H., et al.: Flexible multibody dynamics using coordinate reduction improved by dynamic correction. Multibody Syst. Dyn. 42(4), 411–429 (2018)

    MathSciNet  MATH  Google Scholar 

  206. Sun, D.Y., Chen, G.P., Sun, R.J.: Model reduction of a multibody system including a very flexible beam element. J. Mech. Sci. Technol. 28(8), 2963–2969 (2014)

    Google Scholar 

  207. Fischer, M., Eberhard, P.: Linear model reduction of large scale industrial models in elastic multibody dynamics. Multibody Syst. Dyn. 31(1), 27–46 (2014)

    MathSciNet  Google Scholar 

  208. Shiiba, T., Fehr, J., Eberhard, P.: Flexible multibody simulation of automotive systems with non-modal model reduction techniques. Veh. Syst. Dyn. 50(12), 1905–1922 (2012)

    Google Scholar 

  209. Fehr, J., Fischer, M., Haasdonk, B., et al.: Greedy-based approximation of frequency-weighted Gramian matrices for model reduction in multibody dynamics. Z. Angew. Math. Mech. 93(8), 501–519 (2013)

    MathSciNet  MATH  Google Scholar 

  210. Fehr, J., Eberhard, P.: Error-controlled model reduction in flexible multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 031005 (2010)

    Google Scholar 

  211. Liang, J.X., Ma, O., Liu, C.S.: Model reduction of contact dynamics simulation using a modified Lyapunov balancing method. Front. Mech. Eng. 6(4), 383–391 (2011)

    Google Scholar 

  212. Xiao, Z.H., Jiang, Y.L.: Dimension reduction for second-order systems by general orthogonal polynomials. Math. Comput. Model. Dyn. Syst. 20(4), 414–432 (2014)

    MathSciNet  MATH  Google Scholar 

  213. Masoudi, R., Uchida, T., McPhee, J.: Reduction of multibody dynamic models in automotive systems using the proper orthogonal decomposition. J. Comput. Nonlinear Dyn. 10(3), 031007 (2015)

    Google Scholar 

  214. Kim, E., Kim, H., Cho, M.: Model order reduction of multibody system dynamics based on stiffness evaluation in the absolute nodal coordinate formulation. Nonlinear Dyn. 87(3), 1901–1915 (2017)

    Google Scholar 

  215. Wu, L., Tiso, P.: Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst. Dyn. 36(4), 405–425 (2016)

    MathSciNet  MATH  Google Scholar 

  216. Holm-Jørgensen, K., Nielsen, S.R.K.: A component mode synthesis algorithm for multibody dynamics of wind turbines. J. Sound Vib. 326, 753–767 (2009)

    Google Scholar 

  217. Abbas, L.K., Rui, X.T., Marzocca, P.: Panel flutter analysis of plate element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 27, 135–152 (2011)

    MathSciNet  MATH  Google Scholar 

  218. Aarts, R.G.K.M., JonkerJ.B.: Dynamic simulation of planar flexible link manipulators using adaptive modal integration. Multibody Syst. Dyn. 7(1): 31–50 (2002)

  219. Wang, F.X.: Model reduction with geometric stiffening nonlinearities for dynamic simulations of multibody systems. Int. J. Struct. Stab. Dyn. 13, 1350046 (2013)

    MathSciNet  MATH  Google Scholar 

  220. Ihrle, S., Lauxmann, M., Eiber, A., et al.: Nonlinear modelling of the middle ear as an elastic multibody system-applying model order reduction to acousto-structural coupled systems. J. Comput. Appl. Math. 246, 18–26 (2012)

    MathSciNet  MATH  Google Scholar 

  221. Luo, K., Hu, H.Y., Liu, C., et al.: Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Comput. Methods Appl. Mech. Eng. 324(1), 573–594 (2017)

    MathSciNet  Google Scholar 

  222. Heirman Gert, H.K., Naets, F., Desmet, W.: A system-level model reduction technique for the efficient simulation of flexible multibody systems. Int. J. Numer. Meth. Eng. 85, 330–354 (2011)

    MathSciNet  MATH  Google Scholar 

  223. Heirman Gert, H.K., Naets, F., Desmet, W.: Forward dynamical analysis of flexible multibody systems using system-level model reduction. Multibody Syst. Dyn. 25(1), 97–113 (2011)

    MathSciNet  MATH  Google Scholar 

  224. Heirman G.H.K., Desmet W.: System-level modal representation of flexible multibody systems. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, San Diego, CA (2009)

  225. Palomba, I., Richiedei, D., Trevisani, A.: A model reduction strategy for flexible-link multibody systems. In: Boschetti, G., Gasparetto, A. (eds) Advances in Italian Mechanism Science. Mechanisms and Machine Science, Vol. 47. Springer, Cham (2017)

  226. Stadlmayr, D., Witteveen, W., Steiner, W.: A generalized constraint reduction method for reduced order MBS models. Multibody Syst. Dyn. 41(3), 259–274 (2017)

    MathSciNet  MATH  Google Scholar 

  227. Liu, Z.Y., Hong, J.Z., Wang, J.Y.: Study on model reduction of flexible multibody system with contact collision. In; The 9th National Academic Conference of System Dynamics and the 4th National Academic Conference on Aerospace Dynamics and Control. Wuhan, China (2015)

  228. Held, A., Nowakowski, C., Moghadasi, A., et al.: On the influence of model reduction techniques in topology optimization of flexible multibody systems using the floating frame of reference approach. Struct. Multidiscip. Optim. 53(1), 67–80 (2016)

    MathSciNet  Google Scholar 

  229. Orden, J.C.G.: Analysis of joint clearances in multibody systems. Multibody Syst. Dyn. 13(4), 401–420 (2005)

    MathSciNet  MATH  Google Scholar 

  230. Fox, B., Jennings, L.S., Zomaya, A.Y.: Numerical computation of differential-algebraic equations for nonlinear dynamics of multibody android systems in automobile crash simulation. IEEE Trans. Biomed. Eng. 46(10), 1199–1206 (1999)

    Google Scholar 

  231. Wang, W.B., Kang, K., Zhao, H.L.: Joint simulation of crashworthy train set based on finite element and multi-body dynamics. J. Tongji Univ. Nat. Sci. 39(10), 1552–1556 (2011)

    Google Scholar 

  232. Masoudi, R., Mcphee, J.: A novel micromechanical model of nonlinear compression hysteresis in compliant interfaces of multibody systems. Multibody Syst. Dyn. 37(3), 325–343 (2016)

    MathSciNet  Google Scholar 

  233. Hassan, M.T.Z., Shi, M.G., Meguid, S.A.: Nonlinear multibody dynamics and finite element modeling of occupant response: part I–rear vehicle collision. Int. J. Mech. Mater. Des. pp. 1–19 (2019)

  234. Dong, F.X., Hong, J.Z.: Review of impact problem for dynamics of multibody system. Adv. Mech. 39(3), 352–359 (2009)

    Google Scholar 

  235. Han, S.L., Hong, J.Z.: Several key issues in flexible multibody dynamics with contact/impact. Mech. Eng. 33(2), 1–7 (2011)

    Google Scholar 

  236. Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. 8(2), 021012 (2012)

    Google Scholar 

  237. Yan, ShZ, Xiang, W.K., Huang, T.Q.: Advances in modeling of clearance joints and dynamics of mechanical systems with clearances. Acta Scientiarum Naturalium Universitatis Pekinensis 52(4), 741–755 (2016)

    MathSciNet  Google Scholar 

  238. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)

    Google Scholar 

  239. Damic, V., Cohodar, M., Damic, D.: Discontinuities in physical modeling: bond graph models of impact in multibody systems. In; 10th International Conference on Bond Graph Modeling and Simulation (ICBGM) as Part of SummerSim MultiConference. Genoa, Italy (2012)

  240. Bai, Z.F., Zhao, Y., Tian, H.: Study on contact dynamics for flexible multi-body system. J. Vib. Shock 28(6), 75–78 (2009)

    Google Scholar 

  241. Li, Q., Wang, T.S., Ma, X.R.: Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact. Multibody Syst. Dyn. 21(3), 249–260 (2009)

    MATH  Google Scholar 

  242. Yu, L., Zhao, Z.H., Ren, Q.H., et al.: Contact simulations of flexible bodies based on absolute nodal coordinates. J. Tsinghua Univ. Sci. Technol. 50(7), 1135–1140 (2010)

    Google Scholar 

  243. Choi, J., Rhim, S., Choi, J.H.: A general purpose contact algorithm using a compliance contact force model for rigid and flexible bodies of complex geometry. Int. J. Non-Linear Mech. 53(SI): 13–23 (2013)

    Google Scholar 

  244. Wang, Q.T., Tian, Q., Hu, H.Y.: Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dyn. 83(4), 1919–1937 (2016)

    Google Scholar 

  245. Dong, F.X., Hong, J.Z., Zhu, K., et al.: Numerical and experimental studies on impact dynamics of a planar flexible multibody system. Acta. Mech. Sin. 26(4), 635–642 (2010)

    MathSciNet  MATH  Google Scholar 

  246. Wang, D.T., Hong, J.Z., Wu, T.H.: Additional contact constraint method in impact stage of planar flexible multi-body dynamics. Chin. J. Theoret. Appl. Mech. 43(6), 1157–1161 (2011)

    Google Scholar 

  247. Qian, Z.J., Zhang, D.G., Jin, C.Q.: Dynamic simulation for flexible multibody systems containing frictional impact and stick- slip processes. J. Vib. Shock 36(23), 32–37 (2017)

    Google Scholar 

  248. Dong, F.X., Hong, J.Z.: Study on the modeling theory of the normal impact dynamics for the planar flexible multibody system. Chin. J. Comput. Mech. 27(6), 1042–1048 (2010)

    Google Scholar 

  249. Duan, Y.C., Zhang, D.G., Hong, J.Z.: Partition method for impact dynamics of flexible multibody systems based on contact constraint. Appl. Math. Mech. 34(11), 1393–1404 (2013)

    MathSciNet  Google Scholar 

  250. Chen, P., Liu, J.Y., Lu, G.C.: A new subregion mesh method for the investigation of the elastic-plastic impact in flexible multibody systems. Acta. Mech. Sin. 33(1), 189–199 (2017)

    MathSciNet  MATH  Google Scholar 

  251. Yao, T.Q., Chi, Y.L., Huang, Y.Y., et al.: Research on multibody dynamics and contact vibration of belt transmission. J. Syst. Simul. 21(16), 4945–4950 (2009)

    Google Scholar 

  252. Bhalerao, K.D., Anderson, K.S.: Modeling intermittent contact for flexible multibody systems. Nonlinear Dyn. 60(1–2), 63–79 (2010)

    MATH  Google Scholar 

  253. Gao, H., Gan, F., Dai, H.Y.: A dynamic gluing algorithm for rigid-flexible contact problems. J. Vib. Shock 31(23), 123–127 (2012)

    Google Scholar 

  254. Duan, Y.C., Zhang, D.G.: Flexible multibody system impact dynamics based on elastic-plastic contact. J. Nanjing Univ. Sci. Technol. 36(2), 189–194 (2012)

    Google Scholar 

  255. Tamarozzi, T., Ziegler, P., Eberhard, P., et al.: On the applicability of static modes switching in gear contact applications. Multibody Syst. Dyn. 30(2), 209–219 (2013)

    Google Scholar 

  256. Duan, Y.C., Zhang, D.G., Hong, J.Z.: Global Impact Dynamic modeling and verification of a flexible beam with large overall motion. Adv. Mech. Eng. 362317 (2013)

  257. Yu, H.N., Zhao, J.S., Chu, F.L.: An enhanced multi-point dynamics methodology for collision and contact problem. Proc. Inst.Mech. Eng. C J. Mech. Eng. Sci. 227(6), 1203–1223 (2013)

    Google Scholar 

  258. Pichler, F., Witteveen, W., Fischer, P.: A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multibody Syst. Dyn. 40(4), 407–436 (2017)

    MathSciNet  MATH  Google Scholar 

  259. Calì, M., Oliveri, S.M., Sequenzia, G., Fatuzzo, G.: An effective model for the sliding contact forces in a multibody environment. In: Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G., Rizzuti, S. (eds.) Adv. Mech. Des. Eng. Manuf. Lecture Notes in Mechanical Engineering, Springer, Cham (2017)

    Google Scholar 

  260. Ambrosio, J.A.C., Goncalves, J.P.C.: Vehicle crashworthiness design and analysis by means of nonlinear flexible multibody dynamics. Int. J. Veh. Des. 26(4), 309–330 (2001)

    Google Scholar 

  261. Ryu, H.S., Huh, K.S., Bae, D.S., et al.: Development of a multibody dynamics simulation tool for tracked vehicles—(Part I, efficient contact and nonlinear dynamic modeling). JSME Int J., Ser. C 46(2), 540–549 (2003)

    Google Scholar 

  262. Askari, E., Flores, P., Dabirrahmani, D., et al.: Nonlinear vibration and dynamics of ceramic on ceramic artificial hip joints: a spatial multibody modeling. Nonlinear Dyn. 76(2), 1365–1377 (2014)

    Google Scholar 

  263. You, B.D., Wen, J.M., Zhang, G.Y., et al: Nonlinear dynamic modeling for a flexible laminated composite appendage attached to a spacecraft body undergoing deployment and locking motions. J. Aerosp. Eng. 29(5) (2016)

    Google Scholar 

  264. Shi, J.B., Liu, Z.Y., Hong, J.Z.: Dynamic contact model of shell for multibody system applications. Multibody Syst. Dyn. 44(4), 335–366 (2018)

    MathSciNet  MATH  Google Scholar 

  265. Schiehlen, W., Seifried, R., Eberhard, P.: Elastoplastic phenomena in multibody impact dynamics. Comput. Methods Appl. Mech. Eng. 195(50–51), 6874–6890 (2006)

    MathSciNet  MATH  Google Scholar 

  266. Dupac, M., Beale, D.G.: Dynamic analysis of a flexible linkage mechanism with cracks and clearance. Mech. Mach. Theory 45(12), 1909–1923 (2010)

    MATH  Google Scholar 

  267. Rahmanian, S., Ghazavi, M.R.: Bifurcation in planar slider-crank mechanism with revolute clearance joint. Mech. Mach. Theory 91, 86–101 (2015)

    Google Scholar 

  268. Pereira, C., Flores, P., Ramalho, A., et al.: The influence of contact model, friction and lubrication on the dynamics of cylindrical clearance joints. In: 10th International Conference on Computational Structures Technology. Valencia, Spain (2010)

  269. Li, P., Chen, W., Li, D.S., et al.: A novel transition model for lubricated revolute joints in planar multibody systems. Multibody Syst. Dyn. 36(3), 279–294 (2016)

    MathSciNet  MATH  Google Scholar 

  270. Lorenz, N., Offner, G., Knaus, O.: Thermal analysis of hydrodynamic lubricated journal bearings in internal combustion engines, Proceedings of the Institution of Mechanical Engineers, Part K-Journal of Multi-body. Dynamics 231(3), 406–419 (2017)

    Google Scholar 

  271. Meuter, M., Offner, G., Haase, G.: Multi-body engine simulation including elastohydrodynamic lubrication for non-conformal conjunctions. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 231(3), 457–468 (2017)

    Google Scholar 

  272. Ravn, P., Shivaswamy, S., Alshaer, B.J., et al.: Joint clearances with lubricated long bearings in multibody mechanical systems. J. Mech. Des. 122(4), 484–488 (2000)

    Google Scholar 

  273. Flores, P., Ambrosio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004)

    MATH  Google Scholar 

  274. Fang, C.C., Meng, X.H., Lu, Z.J., et al.: Modeling a lubricated full-floating pin bearing in planar multibody systems. Tribol. Int. 131, 222–237 (2019)

    Google Scholar 

  275. Chen, K., Zhang, G.J., Wu, R., et al.: Dynamic analysis of a planar hydraulic rock-breaker mechanism with multiple clearance joints. Shock Vib. 4718456 (2019)

  276. Zhao, B., Zhou, K., Xie, Y.B.: A new numerical method for planar multibody system with mixed lubricated revolute joint. Int. J. Mech. Sci. 113, 105–119 (2016)

    Google Scholar 

  277. Hou, J.H., Yao, G.F., Huang, H.L.: Dynamic analysis of a spatial mechanism including frictionless spherical clearance joint with flexible socket. J. Comput. Nonlinear Dyn. 13(3), 031002 (2018)

    Google Scholar 

  278. Su, Y.W., Huo, W.N., Chen, W., et al.: Dynamic analysis of multibody system with lubricated revolute joints. Lubr. Eng. 42(3), 18–22 (2017)

    Google Scholar 

  279. Erkaya, S.: Clearance-induced vibration responses of mechanical systems: computational and experimental investigations. J. Braz. Soc. Mech. Sci. Eng. 40(2): UNSP 90 (2018)

  280. Tian, Q., Liu, C., Machado, M., et al.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    MATH  Google Scholar 

  281. Tian, Q., Zhang, Y., Chen, L., et al.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)

    MATH  Google Scholar 

  282. Tian, Q., Xiao, Q., Sun, Y., et al.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015)

    MathSciNet  Google Scholar 

  283. Tian, Q., Lou, J., Mikkola, A.: A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics. Mech. Mach. Theory 107, 210–228 (2017)

    Google Scholar 

  284. Jin, C.M., Qiu, Y., Fan, L., et al.: The non-linear dynamic behavior of an elastic linkage mechanism with clearances. J. Sound Vib. 249(2), 213–226 (2002)

    Google Scholar 

  285. Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53(7), 30–49 (2012)

    Google Scholar 

  286. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    MATH  Google Scholar 

  287. Bai, Z.F., Zhao, Y., Wang, X.G.: Wear analysis of revolute joints with clearance in multibody systems. Sci. China Phy. Mech. Astron. 56(8), 1581–1590 (2013)

    Google Scholar 

  288. Xiang, W.W.K., Yan, S.Z., Wu, J.N.: A comprehensive method for joint wear prediction in planar mechanical systems with clearances considering complex contact conditions. Sci. China Technol. Sci. 58(1), 86–96 (2015)

    Google Scholar 

  289. Zhao, B., Zhang, Z.N., Dai, X.D.: Modeling and prediction of wear at revolute clearance joints in flexible multibody systems. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(2), 317–329 (2014)

    Google Scholar 

  290. Mukras, S., Kim, N.H., Mauntler, N.A., et al.: Comparison between elastic foundation and contact force models in wear analysis of planar multibody system. J. Tribol. 132(3), 1–11 (2010)

    Google Scholar 

  291. Haneef, M.D., Randall, R.B., Smith, W.A., et al.: Vibration and wear prediction analysis of IC engine bearings by numerical simulation. Wear 384, 15–27 (2017)

    Google Scholar 

  292. Xu, L.X., Han, Y.C., Dong, Q.B., et al.: An approach for modelling a clearance revolute joint with a constantly updating wear profile in a multibody system: simulation and experiment. Multibody Syst. Dyn. 45(4), 457–478 (2019)

    MathSciNet  Google Scholar 

  293. Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects. Multibody Syst. Dyn. 15(4), 369–391 (2006)

    MATH  Google Scholar 

  294. Walz, N.P., Fischer, M., Hanss, M., et al.: Uncertainties in multibody systems—potentials and challenges. In; International Conference on Noise and Vibration Engineering (ISMA)/International Conference on Uncertainty in Structural Dynamics (USD). Belgium, Leuven (2012)

  295. He, B.Y., Feng, Y., Wang, S.X.: Study on the dynamics of multibody systems with uncertainty. J. Hebei Univ. Technol. 34(4), 7–14 (2005)

    Google Scholar 

  296. Jia, R.Y., Wang, T., Jiang, Z.Y., et al.: Uncertainty analysis of the rocket trail cover separation. J. Natl. Univ. Def. Technol. 36(6), 88–92 (2014)

    Google Scholar 

  297. Yan, S., Guo, P.: Kinematic accuracy analysis of flexible mechanisms with uncertain link lengths and joint clearances. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 225(C8), 1973–1983 (2011)

    Google Scholar 

  298. Li, J.L., Huang, H.Z., Yan, S.Z., et al.: Kinematic accuracy and dynamic performance of a simple planar space deployable mechanism with joint clearance considering parameter uncertainty. Acta Astronaut. 136, 34–45 (2017)

    Google Scholar 

  299. Acri, A., Nijman, E., Acri, A.: Influences of system uncertainties on the numerical transfer path analysis of engine systems. Mech. Syst. Signal Process. 95, 106–121 (2017)

    Google Scholar 

  300. Hays, J., Sandu, A., Sandu, C., et al.: Parametric design optimization of uncertain ordinary differential equation systems. In: ASME International Mechanical Engineering Congress and Exposition (IMECE). Denver, CO (2011)

  301. Hays, J., Sandu, A., Sandu, C., et al.: Motion planning of uncertain ordinary differential equation systems. J. Comput. Nonlinear Dyn. 9(3), 031021 (2014)

    Google Scholar 

  302. Sabet, S., Poursina, M.: Forward kinematic analysis of non-deterministic articulated multibody systems with kinematically closed-loops in polynomial chaos expansion scheme. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA (2015)

  303. Sabet, S., Poursina, M.: Uncertainty analysis of nondeterministic multibody systems. In: ASME International Mechanical Engineering Congress and Exposition (IMECE2016), Phoenix AZ (2016)

  304. Wu, J.L., Luo, Z., Zhang, N., et al.: Dynamic computation of flexible multibody system with uncertain material properties. Nonlinear Dyn. 85(2), 1231–1254 (2016)

    MATH  Google Scholar 

  305. Wu, J.L., Luo, Z., Zhang, N., et al.: Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties. Mech. Syst. Signal Process. 85, 487–511 (2017)

    Google Scholar 

  306. Rong, B., Rui, X.T., Tao, L., et al.: Perturbation finite element transfer matrix method for random eigenvalue problems of uncertain structures. J. Appl. Mech. 79(2), 021005 (2012)

    Google Scholar 

  307. Zhang, J., Wang, G.P., Rui, X.T.: Vibration analysis of systems with random parameters using perturbation transfer matrix method. J., Mach. Des. 32(10), 86–90 (2015)

    Google Scholar 

  308. Chen, W.D., Yu, Y.C., Jia, P., et al.: Application of finite volume method to structural stochastic dynamics. Adv. Mech. Eng. 391704 (2013)

  309. Wang, G.P., Rui, X.T., Rong, B.: Evaluation of PDF of eigenvalue for multibody system with random parameters. In: 4th International Conference on Mechanical Engineering and Mechanics. Suzhou, China (2011)

  310. Batou, A., Soize, C.: Rigid multibody system dynamics with uncertain rigid bodies. Multibody Syst. Dyn. 27(3), 285–319 (2012)

    MathSciNet  MATH  Google Scholar 

  311. Batou, A., Soize, C.: Random dynamical response of a multibody system with uncertain rigid bodies. Comput. Methods Stoch. Dyn. 26, 1–14 (2013)

    MathSciNet  MATH  Google Scholar 

  312. Alemayehu, F.M., Ekwaro-Osire, S.: Uncertainty considerations in the dynamics of gear-pair. In; ASME International Mechanical Engineering Congress and Exposition, Houston, TX (2012)

  313. Alemayehu, F.M., Ekwaro-Osire, S.: Uncertainty considerations in the dynamic loading and failure of spur gear pairs. J. Mech. Des. 135(8), 084501 (2013)

    Google Scholar 

  314. Zhao, K., Chen, J.J., Yan, B., et al.: Dynamic analysis of multibody systems with probabilistic parameters. Chin. J. Theoret. Appl. Mech. 44(4), 802–806 (2012)

    Google Scholar 

  315. Wanichanon, T., Cho, H., Udwadia, F.E.: An approach to the dynamics and control of uncertain multi-body systems. In: IUTAM Symposium on Dynamical Analysis of Multibody Systems with Design Uncertainties, Stuttgart, Germany (2014)

  316. Zha, Q.C., Rui, X.T., Yu, H.L., et al.: Study on the impact sensitivity of firing factors of self-propelled gun. J. Vib. Eng. 30(6), 938–946 (2017)

    Google Scholar 

  317. Wasfy, T.M., Noor, A.K.: Finite element analysis of flexible multibody systems with fuzzy parameters. Comput. Methods Appl. Mech. Eng. 160, 223–243 (1998)

    MATH  Google Scholar 

  318. Yu, L.C.: Fuzzy RSM of flexible mechanism reliability analysis. J. Detect. Control 32(3), 87–90 (2010)

    Google Scholar 

  319. Wang, Z., Tian, Q., Hu, H.Y.: Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. 86(3), 1571–1597 (2016)

    Google Scholar 

  320. Xin P.F., Rong, J.L., Xiang, Y., et al.: Uncertainty analysis with interval parameters for flexible space manipulator. Trans. Beijing Inst. Technol. 37(10) (2017)

  321. Wu, J.L., Zhang, Y.Q.: The dynamic analysis of multibody systems with uncertain parameters using interval method. Appl. Mech. Mater. 152–154, 1555–1561 (2012)

    Google Scholar 

  322. Wang, Z., Tian, Q., Hu, H.Y.: Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84, 527–548 (2016)

    MathSciNet  MATH  Google Scholar 

  323. Feng, Y.J.: Uncertainty analysis of multibody dynamics based on metamodels, Master Dissertation. Nanjing University of Aeronautics and Astronautics, Nanjing (2013)

  324. Koganti, P.B., Udwadia, F.E.: Dynamics and precision control of uncertain tumbling multibody systems. J. Guid. Control Dyn. 40(5), 1176–1190 (2017)

    Google Scholar 

  325. Wang, Z., Tian, Q., Hu, H.Y.: Dynamics study and sensitivity analysis of flexible multibody systems with interval parameters. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC (2016)

  326. Wu, J.L., Luo, Z., Zhang, Y.Q., et al.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Meth. Eng. 95(7), 608–630 (2013)

    MathSciNet  MATH  Google Scholar 

  327. Zhan, Z.H., Zhang, X.M., Jian, Z.C.: Error modelling and motion reliability analysis of a planar parallel manipulator with multiple uncertainties. Mech. Mach. Theory 124, 55–72 (2018)

    Google Scholar 

  328. Wang, Z., Tian, Q., Hu, H.Y.: Dynamics of flexible multibody systems with hybrid uncertain parameters. Mech. Mach. Theory 121, 128–147 (2018)

    Google Scholar 

  329. Sun, D.Y., Chen, G.P.: Kinematic accuracy analysis of planar mechanisms with clearance involving random and epistemic uncertainty. Eur. J. Mech. A. Solids 58, 256–261 (2016)

    MathSciNet  MATH  Google Scholar 

  330. Wang, J., Liu, J.Y.: Rigid-flexible-thermal coupling dynamic analysis of flexible multi-body system. Chin. J. Appl. Mech. 29(5), 501–507 (2012)

    Google Scholar 

  331. Wu, J., Zhao, Z.H., Ren, G.X., et al.: Thermal-structural coupled tube element of multibody dynamics and its application. Eng. Mech. 30(11), 28–35 (2013)

    Google Scholar 

  332. You, B.D., Zhang, H.B., Wang, P.X., et al.: Satellite antenna dynamics and control with thermal effect. Aircr. Eng. Aerosp. Technol. 87(3), 274–283 (2015)

    Google Scholar 

  333. Grujicic, M., Arakere, G., Nallagatla, H., et al.: Computational investigation of blast survivability and off-road performance of an up-armoured high-mobility multi-purpose wheeled vehicle. Proc. Inst. Mech. Eng. D J. Automob. Eng. 223(D3), 301–325 (2009)

    Google Scholar 

  334. Cui, T., Zhang, W.H., Zhang, S.G., et al.: Study on the fluid-solid coupling vibration of train passing through platform at high speed. China Railw. Sci. 31(2), 50–55 (2010)

    Google Scholar 

  335. Cavagna, L., Masarati, P., Quaranta, G.: Coupled multibody/computational fluid dynamics simulation of maneuvering flexible aircraft. J. Aircr. 48(1), 92–106 (2011)

    Google Scholar 

  336. Chen, J.P., Zhou, R.R., Yu, W.J.: Dynamic response of liquid-multibody interaction problems in liquid-filled systems. Acta. Mech. Sin. 36(6), 724–731 (2004)

    Google Scholar 

  337. Sun, H.L.: Research on recursive dynamics of rigid-flexible-liquid coupling mechanical multibody systems, Ph.D. Dissertation, Nanjing: Nanjing University of Aeronautics and Astronautics (2011)

  338. Fan, W.: Multi-field Coupling Dynamics For Multi-body System. Master Dissertation. Shanghai Jiao Tong University, Shanghai (2013)

  339. Alioli, M., Morandini, M., Masarati, P.: Coupled multibody-fluid dynamics simulation of flapping wings. In; ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE), Portland, OR (2013)

  340. Park, J.S., Sa, J.H., Park, S.H., et al.: Loosely coupled multibody dynamics-CFD analysis for a rotor in descending flight. Aerosp. Sci. Technol. 29(1), 262–276 (2013)

    Google Scholar 

  341. Li, Y., Castro, A.M., Sinokrot, T., et al.: Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence. Renewab. Energy 76, 338–361 (2015)

    Google Scholar 

  342. Li, Y., Castro, A.M., Martin, J.E., et al.: Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics. Renewa. Energy 101, 1037–1051 (2017)

    Google Scholar 

  343. Gao, X.L.: Research on Multibody Dynamics and Fluid-structure Interaction of Parachute-body System, Ph.D. Dissertation, ChangSha: National University of Defense Technology (2016)

  344. Liu, F., Liu, G., Jiang, X.: Simulation of aerial refueling system with multibody dynamics and CFD. Acta Aerodyn. Sin. 34(2), 276–280 (2016)

    Google Scholar 

  345. Schorgenhumer, M., Gruber, P.G., Gerstmayr, J.: Interaction of flexible multibody systems with fluids analyzed by means of smoothed particle hydrodynamics. Multibody Syst. Dyn. 30(1), 53–76 (2013)

    MathSciNet  Google Scholar 

  346. Kim, S.P., Park, J.C., Sohn, J.H.: Co-simulation of fluid-multibody dynamics of sloshing flows with spring-damper system. Korean Soc. Comput. Fluids Eng. 22(4), 103–108 (2017)

    Google Scholar 

  347. Hu, W., Tian, Q., Hu, H.Y.: Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid. Sci. China Phy. Mech. Astron. 61(4), 044711 (2018)

    Google Scholar 

  348. Wasfy, T.M., Wasfy, H.M., Peters, J.M.: Coupled multibody dynamics and smoothed particle hydrodynamics for modeling vehicle water fording. In; ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA (2015)

  349. Schorgenhumer, M., Humer, A., Gerstmayr, J.: Efficient fluid-structure interaction based on modally reduced multibody systems and smoothed particle hydrodynamics. In; 11th World Congress on Computational Mechanics (WCCM)/5th European Conference on Computational Mechanics (ECCM)/6th European Conference on Computational Fluid Dynamics (ECFD), Barcelona, Spain (2014)

  350. Lutzenberger, S., Weissenfels, C.: Coupling of moving, actively controlled maglev vehicles and guide way systems: Algorithm and simulation. In: 6th International Conference on Structural Dynamics. France, Paris (2005)

  351. Deng, Y., Wei, Q.C., Ni, Y.J., et al.: Modeling and simulation of high-speed Maglev vehicle/guideway/ bridge coupling system. In: 26th Chinese Control Conference. Zhangjiajie, China (2007)

  352. Liang, D., Song, Y.M., Sun, T., et al.: Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes. Mech. Syst. Signal Process. 103, 413–439 (2018)

    Google Scholar 

  353. Gao, M.M., Pan, J.Y.: Coupling vibration analysis for train-track-bridge system. Struct. Dyn. 1–3, 1069–1075 (2005)

    Google Scholar 

  354. Li, T., Zhang, J.Y., Zhang, W.H.: Coupling dynamics performance of vehicle-track under cross wind. J. Traffic Transp. Eng. 11(5), 55–60 (2011)

    Google Scholar 

  355. Barrios, G.K.P., Tavares, L.M.: A preliminary model of high pressure roll grinding using the discrete element method and multi-body dynamics coupling. Int. J. Miner. Process. 56(SI): 32-42 (2016)

    Google Scholar 

  356. Busch, M., Schweizer, B.: Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach. Arch. Appl. Mech. 82(6), 723–741 (2012)

    MATH  Google Scholar 

  357. Lin, T.J., He, Z.Y., Zhong, S., et al.: Multi-body dynamic simulation and vibro-acoustic coupling analysis of marine gearbox. J. Hunan Univ. Natl. Sci. 42(2), 22–28 (2015)

    Google Scholar 

  358. Fleissner, F., Lehnart, A., Eberhard, P.: Dynamic simulation of sloshing fluid and granular cargo in transport vehicles. Veh. Syst. Dyn. 48(1), 3–15 (2010)

    Google Scholar 

  359. Eun, W., Kim, J., Kwon, O.J., et al.: Coupled analysis of thermo-fluid-flexible multi-body dynamics of a two-dimensional engine nozzle. Int. J. Aeronaut. Space Sci. 18(1), 70–81 (2017)

    Google Scholar 

  360. Hashemi, S., Kroker, A., Bobach, L., et al.: Multibody dynamics of pivot slipper pad thrust bearing in axial piston machines incorporating thermal elastohydrodynamics and mixed lubrication model. Tribol. Int. 96, 57–76 (2016)

    Google Scholar 

  361. Yue, B.Z.: Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft. AIAA J. 49(10), 2090–2099 (2011)

    MATH  Google Scholar 

  362. Lu, J.: Study on nonlinear dynamics of a liquid-filled spacecraft with flexible appendages, Ph.D. Dissertation, Beijing: Tsinghua University (2006)

  363. Bauchau, O.A.: Computational schemes for flexible, nonlinear multi-body systems. Multibody Syst. Dyn. 2(2), 169–225 (1998)

    MathSciNet  MATH  Google Scholar 

  364. Wang, Q., Lu, Q.S.: Advances in the numerical methods for Lagrange’s equations of multibody systems, 2001. Adv. Mech. 31(1), 9–17 (2001)

    Google Scholar 

  365. Wang, G.P.: Numerical algorithms of multibody system dynamics. Comput. Simul. 23(12), 86–89 (2006)

    Google Scholar 

  366. Rong, B., Rui, X.T., Wang, G.P.: Developments of studies on multibody system dynamics. J. Vib. Shock 30(7), 178–187 (2011)

    Google Scholar 

  367. Fu, F.F.: Research on numerical methods of differential / algebraic equations for multibody system dynamics. In: 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT). Beijing, China (2017)

  368. Katsikadelis, J.T.: A new direct time integration method for the equations of motion in structural dynamics. Z. Angew. Math. Mech. 94(9), 757–774 (2014)

    MathSciNet  MATH  Google Scholar 

  369. Jia, C.G., Li, Y.M., Xia, H.L., et al.: Novel partitioned integration method based on Newmark’s scheme for structural dynamic problems. Appl. Mech. Mater. 580–583, 2996–3002 (2014)

    Google Scholar 

  370. Gavrea, B., Negrut, D., Potra, F.A.: The Newmark integration method for simulation of multibody systems: Analytical considerations. In: ASME International Mechanical Engineering Congress and Exposition, Orlando, FL (2005)

  371. Xiong, X.G., Kikuuwe, R., Yamamoto, M.: A differential algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. J. Appl. Math. 320276 (2013)

  372. Qian, S.L., He, B., Yao, L.K., et al.: Improved finite element transfer matrix method of plane beam elements using the absolute nodal coordinate formulation. J. Mech. Strength 38(3), 575–579 (2016)

    Google Scholar 

  373. D’Ambrosio, R., Ferro, M., Paternoster, B.: Collocation-based two step Runge-Kutta methods for ordinary differential equations. In: International Conference on Computational Science and Its Applications (ICCSA 2008). Perugia, Italy (2008)

  374. Butcher, J.C.: Runge-Kutta methods for ordinary differential equations. In: 3rd International Conference on Numerical Analysis and Optimization- Theory, Methods, Applications and Technology Transfer, Muscat, Oman (2014)

  375. Haug, E.J.: An ordinary differential equation formulation for multibody dynamics: holonomic constraints. J. Comput. Inf. Sci. Eng. 16(2), 021007 (2016)

    Google Scholar 

  376. Othman, K.I., Ibrahim, Z.B., Suleiman, M., et al.: Automatic intervalwise block partitioning using Adams type method and backward differentiation formula for solving ODEs. Appl. Math. Comput. 188(2), 1642–1646 (2007)

    MathSciNet  MATH  Google Scholar 

  377. Blasik, M.: A new variant of Adams - Bashforth - Moulton method to solve sequential fractional ordinary differential equation. In; 21st International Conference on Methods and Models in Automation and Robotics (MMAR). Miedzyzdroje, Poland (2016)

  378. Feng, B.P.: The Gear program for solving initial value problems in general or stiff ordinary differential equations. J. Numer. Methods Comput. Appl. 1, 12–23 (1982)

    MathSciNet  Google Scholar 

  379. Nejad, L.A.M.: A comparison of stiff ODE solvers for astrochemical kinetics problems. Astrophys. Space Sci. 299(1), 1–29 (2005)

    MATH  Google Scholar 

  380. Rill, G.: A modified implicit Euler algorithm for solving vehicle dynamic equations. Multibody Syst. Dyn. 15, 1–24 (2006)

    MATH  Google Scholar 

  381. Bursi, O.S., He, L., Bonelli, A., et al.: Novel generalized-alpha methods for interfield parallel integration of heterogeneous structural dynamic systems. J. Comput. Appl. Math. 234(7), 2250–2258 (2010)

    MathSciNet  MATH  Google Scholar 

  382. Attili, B.S.: The Hilber-Hughes-Taylor-alpha (HHT-alpha) method compared with an implicit Runge-Kutta for second-order systems. Int. J. Comput. Math. 87(8), 1755–1767 (2010)

    MathSciNet  MATH  Google Scholar 

  383. Weber, S., Arnold, M., Valasek, M.: Quasistatic approximations for stiff second order differential equations. Appl. Numer. Math. 62(10), 1579–1590 (2012)

    MathSciNet  MATH  Google Scholar 

  384. Wang, X.M.: Research of numerical solution for dynamics of multibody systems, Master Dissertation. Xidian University, Xi’An (2009)

  385. Pan, ZhK, Sun, H.Q., Zang, H.W., et al.: Numerical methods for stiff differential equations of flexible multibody system dynamics. J. Qingdao Univ. 11(3), 36–39 (1996)

    Google Scholar 

  386. Zhong, W.X.: Precise computation for transient analysis. Comput. Struct. Mech. Appl. 12(1), 1–6 (1995)

    MathSciNet  Google Scholar 

  387. Lv, H.X., Yu, H.J., Qiu, C.H.: An analytical step-by-step integral procedure of dynamics equations. Eng. Mech. 18(5), 1–7 (2001)

    Google Scholar 

  388. Lv, H.X., Yu, H.J., Qiu, C.H.: Direct integration methods with integral model for dynamic systems. Appl. Math. Mech. 22(2), 151–156 (2001)

    MathSciNet  Google Scholar 

  389. Liu, T.L., Liu, J.Y.: A step-by-step integration method based on principle of minimum transformed energy. Eng. Mech. 22(2), 1–24 (2005)

    MathSciNet  Google Scholar 

  390. Oghbaei, M., Anderson, K.S.: A new time-finite-element implicit integration scheme for multibody system dynamics simulation. Comput. Methods Appl. Mech. Eng. 195, 7006–7019 (2006)

    MathSciNet  MATH  Google Scholar 

  391. Pu, J.P.: Numerical computation for structural dynamic responses based on a highly accurate differential quadrature method. J. Nanjing Univ. Aeronaut. Astronaut. 36(3), 151–156 (2004)

    MathSciNet  Google Scholar 

  392. Wang, Y.F., Chu, D.W.: A coupled precise and finite difference time integration method for structural dynamics. Acta Mech. Solida Sin. 24(4), 469–474 (2003)

    Google Scholar 

  393. Zou, P., Qu, X.G.: Quasi wavelet-precise time-integration method for solving the vibration problems of beam. J. Shaanxi Univ. Sci. Technol. 29(6), 140–143 (2011)

    Google Scholar 

  394. Pan, Y.H., Wang, Y.F.: Gauss precise time-integration of complex damping vibration systems. Eng. Mech. 29(2), 16–20 (2012)

    Google Scholar 

  395. Gransden, D., Bornemann, P., Rose, M., et al.: A constrained generalised-alpha method for coupling rigid parallel chain kinematics and elastic bodies. Comput. Mech. 55(3), 527–541 (2015)

    MathSciNet  MATH  Google Scholar 

  396. Parida, N.C., Raha, S.: Regularized numerical integration of multibody dynamics with the generalized alpha method. Appl. Math. Comput. 215(3), 1224–1243 (2009)

    MathSciNet  MATH  Google Scholar 

  397. Kobis, M.A., Arnold, M.: Convergence of generalized-alpha time integration for nonlinear systems with stiff potential forces. Multibody Syst. Dyn. 37(1), 107–125 (2016)

    MathSciNet  MATH  Google Scholar 

  398. Shabana, A.A., Hussein, B.A.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: Application to multibody systems. J. Sound Vib. 327(3–5), 557–563 (2009)

    Google Scholar 

  399. Zhang, L., Zhang, D.G.: Two-loop implicit integration method based on backward differential formulation for differential-algebraic equations of multibody system dynamics. J. Mech. Eng. 52(7), 79–87 (2016)

    Google Scholar 

  400. Wang, J.L., Rodriguez, J., Keribar, R.: Integration of flexible multibody systems using Radau IIA algorithms. J. Comput. Nonlinear Dyn. 5(4), 041008 (2010)

    Google Scholar 

  401. Ma, X.T., Zhai, Y.B., Luo, S.Q.: Numerical method of multibody dynamics based on theta1 method. Chin. J. Theoret. Appl. Mech. 43(5), 931–938 (2011)

    Google Scholar 

  402. Ding, J.Y., Pan, Z.K., Chen, L.Q.: Generalized-alpha-SSF method for ODAEs of multibody dynamics. In: 14th Asia Pacific Vibration Conference (APVC) on Dynamics for Sustainable Engineering. China, Hong Kong (2011)

  403. Liu, Y., Ma, J.M.: Discrete null space method for the Newmark integration of multibody dynamic systems. Chin. J. Mech. Eng. 48(5), 87–91 (2012)

    Google Scholar 

  404. Liu, Y., Ma, J.M.: Improved discrete null space method for dynamics analysis constrained multibody systems. Chin. J. Comput. Mech. 30(4), 496–501 (2013)

    Google Scholar 

  405. Milenkovic, P.: Multi-integral method for solving the forward dynamics of stiff multibody systems. J. Dyn. Syst. Meas. Control 135(5): 051014 (2013)

  406. Ma, X.T., Zhai, Y.B., Luo, S.Q.: Dynamics simulation of multi-body system based on backward differentiation formulas. Comput. Integr. Manuf. Syst. 19(1), 119–126 (2013)

    Google Scholar 

  407. Milenkovic, P.: Numerical solution of stiff multibody dynamic systems based on kinematic derivatives. J. Dyn. Syst. Meas. Control 136(6), 061001 (2014)

  408. Wang, J.L., Li, Z.G.: Implementation of HHT algorithm for numerical integration of multibody dynamics with holonomic constraints. Nonlinear Dyn. 80(1–2), 817–825 (2015)

    MathSciNet  Google Scholar 

  409. Prescott, W.: Application of scaling to multibody dynamics simulations. In: ASME International Mechanical Engineering Congress and Exposition (IMECE2015). Houston, TX (2015)

  410. Ding, J.Y.: Genetic algorithm for design optimization of multibody dynamics using differential-algebraic equation integrators. Adv. Mech. Eng. 7(4), 1687814015581260 (2015)

    Google Scholar 

  411. Sun, W.: Numerical algorithms for differential-algebraic equations of multibody dynamics. In: 16th International Conference on Control, Automation and Systems (ICCAS). Gyeongju, South Korea (2016)

  412. Carpinelli, M., Gubitosa, M., Mundo, D.: Automated independent coordinates’ switching for the solution of stiff DAEs with the linearly implicit Euler method. Multibody Syst. Dyn. 36(1), 67–85 (2016)

    MathSciNet  MATH  Google Scholar 

  413. Sommer, H.J.: Third-order differential-algebraic equations for improved integration of multibody dynamics. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE 2017). Cleveland, OH (2017)

  414. Haug, E.: An index 0 Differential-Algebraic equation formulation for multibody dynamics: Holonomic constraints. Mech. Based Des. Struct. Mach. 45(4), 479–506 (2017)

    Google Scholar 

  415. Krinner, A., Schindler, T., Rixen, D.J.: Time integration of mechanical systems with elastohydrodynamic lubricated joints using Quasi-Newton method and projection formulations. Int. J. Numer. Meth. Eng. 110(6), 523–548 (2017)

    MathSciNet  MATH  Google Scholar 

  416. Uhlar, S., Betsch, P.: On the derivation of energy consistent time stepping schemes for friction afflicted multibody systems. Comput. Struct. 88(11–12), 737–754 (2010)

    Google Scholar 

  417. Arnold, M., Hante, S.: Implementation details of a generalized-\(\alpha \) differential-algebraic equation Lie group method. J. Comput. Nonlinear Dyn. 12(2), 021002 (2016)

    Google Scholar 

  418. Arnold, M., Cardona, A., Bruls, O.: Order reduction in time integration caused by velocity projection. J. Mech. Sci. Technol. 29(7), 2579–2585 (2015)

    Google Scholar 

  419. Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012)

    Google Scholar 

  420. Ding, J.Y., Pan, Z.K.: The Lie group Euler methods of multibody system dynamics with holonomic constraints. Adv. Mech. Eng. 10(4), 168781401876415 (2018)

    Google Scholar 

  421. Negrut, D., Jay, L.O., Khude, N.: A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics. J. Comput. Nonlinear Dyn. 4(2), 021008 (2009)

    Google Scholar 

  422. Betsch, P., Hesch, C., Sanger, N., et al.: Variational integrators and energy-momentum schemes for flexible multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 031001 (2010)

    Google Scholar 

  423. Huang, Y.G., Yin, Z.P., Deng, Z.C., et al.: Progress in Geometric integration method for multibody dynamics. Adv. Mech. 39(1), 44–57 (2009)

    Google Scholar 

  424. Juan, C.: García Orden, Energy considerations for the stabilization of constrained mechanical systems with velocity projection. Nonlinear Dyn. 60(1–2), 49–62 (2010)

    Google Scholar 

  425. Flores, P., Machado, M., Seabra, E., et al.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019 (2010)

    Google Scholar 

  426. Hussein, B.A., Shabana, A.A.: Sparse matrix implicit numerical integration of the stiff differential/algebraic equations: Implementation. Nonlinear Dyn. 65(4), 369–382 (2011)

    MathSciNet  Google Scholar 

  427. Lin, S.T., Chen, M.W.: A PID type constraint stabilization method for numerical Integration of multibody systems. J. Comput. Nonlinear Dyn. 6(4), 044501 (2011)

    Google Scholar 

  428. Liu, Y., Ma, J.M.: Adaptive feedback parameters for Baumgartes constraint violation stabilization methods of multibody systems equations of motion. J. Fudan Univ. Nat. Sci. 51(4), 432–436 (2012)

    MathSciNet  Google Scholar 

  429. Orden, J.C.G., Martin, S.C.: Controllable velocity projection for constraint stabilization in multibody dynamics. Nonlinear Dyn. 68(1–2), 245–257 (2012)

    MathSciNet  MATH  Google Scholar 

  430. Ding, J.Y., Pan, Z.K.: Generalized-alpha projection method for differential-algebraic equations of multibody dynamics. Eng. Mech. 30(4), 380–384 (2013)

    Google Scholar 

  431. Schweizer, B., Li, P.: Solving differential-algebraic equation systems: alternative index-2 and index-1 approaches for constrained mechanical systems. J. Comput. Nonlinear Dyn. 11(4), 044501 (2015)

    Google Scholar 

  432. Wei, Y., Deng, Z.C., Li, Q.J., et al.: Projected Runge-Kutta methods for constrained Hamiltonian systems. Appl. Math. Mech. 37(8), 1077–1094 (2016)

    MathSciNet  MATH  Google Scholar 

  433. Omar, M.A.: Modeling and simulation of structural components in recursive closed-loop multibody systems. Multibody Syst. Dyn. 41(1), 47–74 (2017)

    MathSciNet  MATH  Google Scholar 

  434. Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)

    MathSciNet  MATH  Google Scholar 

  435. Melanz, D., Fang, L.N., Jayakumar, P., et al.: A comparison of numerical methods for solving multibody dynamics problems with frictional contact modeled via differential variational inequalities. Comput. Methods Appl. Mech. Eng. 320(15), 668–693 (2017)

    MathSciNet  Google Scholar 

  436. Haddouni, M., Acary, V., Garreau, S., et al.: Comparison of several formulations and integration methods for the resolution of DAEs formulations in event-driven simulation of nonsmooth frictionless multibody dynamics. Multibody Syst. Dyn. 41(3), 201–231 (2017)

    MathSciNet  Google Scholar 

  437. Lee, K.S.: A stabilized numerical solution for the dynamic contact of the bodies having very stiff constraint on the contact point. Comput. Mech. 46(4), 533–543 (2010)

    MATH  Google Scholar 

  438. Lee, K.S.: A short note for numerical analysis of dynamic contact considering impact and a very stiff spring-damper constraint on the contact point. Multibody Syst. Dyn. 26(4), 425–439 (2011)

    MathSciNet  MATH  Google Scholar 

  439. Schindler, T., Rezaei, S., Kursawe, J., et al.: Half-explicit time stepping schemes on velocity level based on time-discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 290, 250–276 (2015)

    MATH  Google Scholar 

  440. Guo, X., Zhang, D.G., Chen, S.J.: Application of Hilber-Hughes-Taylor-alpha method to dynamics of flexible multibody system with contact and constraint. Acta Phys. Sin. 66(16), 164501 (2017)

    Google Scholar 

  441. He, B., Rui, X.T., Wang, G.P.: Riccati discrete time transfer matrix method for elastic beam undergoing large overall motion. Multibody Syst. Dyn. 18(4), 579–598 (2007)

    MathSciNet  MATH  Google Scholar 

  442. Rong, B., Rui, X.T., Wang, G.P., et al.: Modified finite element transfer matrix method for eigenvalue problem of flexible structures. J. Appl. Mech. 78(2), 021016 (2011)

    Google Scholar 

  443. Horner, G.C.: The Riccati transfer matrix method, Ph.D. dissertation, University of Virginia, USA (1975)

  444. Vyasarayani, C.P., Uchida, T., McPhee, J.: Parameter identification in multibody systems using Lie series solutions and symbolic computation. J. Comput. Nonlinear Dyn. 6(4), 041011 (2011)

    Google Scholar 

  445. Dallali, H., Mosadeghzad, M., Medrano-Cerda, G.A., et al.: Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In: IEEE International Conference on Mechatronics (ICM). Vicenza, Italy (2013)

  446. Gede, G., Peterson, D.L., Nanjangud, A.S.: Constrained multibody dynamics with Python: from symbolic equation generation to publication. In: ASME International Design Engineering Technical Conferences / Computers and Information in Engineering Conference (IDETC/CIE). Portland, OR (2013)

  447. Hall, A., Schmitke, C., McPhee, J.: Symbolic formulation of a path-following joint for multibody dynamics. In: ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC). Buffalo, NY (2014)

  448. Burkhardt, M., Seifried, R., Eberhard, P.: Aspects of symbolic formulations in flexible multibody systems. J. Comput. Nonlinear Dyn. 9(4), 041013 (2014)

    Google Scholar 

  449. Wang, E.X., Zou, J.C., Xue, G.P., et al.: Development of efficient nonlinear benchmark bicycle dynamics for control applications. IEEE Trans. Intell. Transp. Syst. 16(4), 2236–2246 (2015)

    Google Scholar 

  450. Peterson, D.L., Gede, G., Hubbard, M.: Symbolic linearization of equations of motion of constrained multibody systems. Multibody Syst. Dyn. 33(2), 143–161 (2015)

    MathSciNet  MATH  Google Scholar 

  451. Banerjee, J., McPhee, J.: Graph-theoretic sensitivity analysis of multi-domain dynamic systems: theory and symbolic computer implementation. Nonlinear Dyn. 85(1), 203–227 (2016)

    MathSciNet  Google Scholar 

  452. Ali, S.: A unified dynamic algorithm for wheeled multibody systems with passive joints and nonholonomic constraints. Multibody Syst. Dyn. 41(4), 317–346 (2017)

    MathSciNet  MATH  Google Scholar 

  453. Lot, R., Massaro, M.: A symbolic approach to the multibody modeling of road vehicles. Int. J. Appl. Mech. 09, 1750068 (2017)

    Google Scholar 

  454. Mauny, J., Porez, M., Boyer, F.: Symbolic dynamic modelling of locomotion systems with persistent contacts—Application to the 3D Bicycle. IFAC-PapersOnLine 50(1), 7598–7605 (2017)

    Google Scholar 

  455. Ros, J., Plaza, A., Iriarte, X., et al.: Symbolic multibody methods for real-time simulation of railway vehicles. Multibody Syst. Dyn. 42(4), 469–493 (2018)

    MathSciNet  Google Scholar 

  456. Zhang, J.: Modeling and numerical solution for dynamic system of spatial multi rigid bodies and shell structure with large deformation, Ph.D. dissertation, Beijing: Tsinghua University, China (2015)

  457. Yenduri, A., Ghoshal, R., Jaiman, R.K.: A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects. Comput. Methods Appl. Mech. Eng. 315, 316–347 (2017)

    MathSciNet  Google Scholar 

  458. Shokouhfar, S., Khorsandijou, S.M.: Developing a numerical simulation software for 3D multibody systems based on a unified computational modeling technique. In: 7th International Conference on Multibody Systems. Nonlinear Dynamics and Control, San Diego, CA (2009)

  459. Ding, J.Y., Pan, Z.K.: Adaptive time integration method for DAES of multibody systems. In: ASME International Mechanical Engineering Congress and Exposition, Houston, TX (2012)

  460. Acary, V.: Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl. Numer. Math. 62(10), 1259–1275 (2012)

    MathSciNet  MATH  Google Scholar 

  461. Arnold, M.: Multi-rate time integration for large scale multibody system models. In: UTAM Symposium on Multiscale Problems in Multibody System Contacts. Springer, pp. 1–10 (2006)

  462. Miao, J.C., Zhu, P., Shi, G.L., Chen, G.L.: Study on sub-cycling algorithm for flexible multi-body system-integral theory and implementation flow chart. Comput. Mech. 41, 257–268 (2008)

    MATH  Google Scholar 

  463. Miao, J.C., Zhu, P., Shi, G.L., Chen, G.L.: Study on sub-cycling algorithm for flexible multi-body system: stability analysis and numerical examples. Comput. Mech. 41, 269–277 (2008)

    MATH  Google Scholar 

  464. Metaxas, D., Koh, E.: Flexible multibody dynamics and adaptive finite element techniques for model synthesis and estimation. Comput. Methods Appl. Mech. Eng. 136(1–2), 1–25 (1996)

    MATH  Google Scholar 

  465. Espinosa, H.D., Zavattieri, P.D., Emore, G.L.: Adaptive FEM computation of geometric and material nonlinearities with application to brittle failure. Mech. Mater. 29(3–4), 275–305 (1998)

    Google Scholar 

  466. Ma, Z.D., Perkins, N.C.: A super-element of track-wheel-terrain interaction for dynamic simulation of tracked vehicles. Multibody Syst. Dyn. 15(4), 347–368 (2006)

    MATH  Google Scholar 

  467. Li, Q., Wang, T.S.: Adaptive mode method in inverse dynamics of a rotating flexible manipulator with high-frequency excitation. Chin. J. Space Sci. 28(4), 345–349 (2008)

    MathSciNet  Google Scholar 

  468. Gundling, C., Sitaraman, J., Roget, B., et al.: Application and validation of incrementally complex models for wind turbine aerodynamics, isolated wind turbine in uniform inflow conditions. Wind Energy 18(11), 1893–1916 (2015)

    Google Scholar 

  469. DeBenedictis, A., Atherton, T.J., Rodarte, A.L., et al.: Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh. Phys. Rev. 97(3), 032701 (2018)

    Google Scholar 

  470. Valentin, J., Sprenger, M., Pfluger, D., et al.: Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models. Int. J. Numer. Methods Biomed. Eng. 34(5), e2965 (2018)

    MathSciNet  Google Scholar 

  471. Gravouil, A., Combescure, A., Brun, M.: Heterogeneous asynchronous time integrators for computational structural dynamics. Int. J. Numer. Meth. Eng. 102(3–4), 202–232 (2015)

    MathSciNet  MATH  Google Scholar 

  472. Fekak, F.E., Brun, M., Gravouil, A., et al.: A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics. Comput. Mech. 60(1), 1–21 (2017)

    MathSciNet  MATH  Google Scholar 

  473. Lunk, C., Simeon, B.: The reverse method of lines in flexible multibody dynamics. In: 14th European Conference for Mathematics in Industry. Leganes, Spain (2006)

  474. Koziara, T., Bicanic, N.: A distributed memory parallel multibody contact dynamics code. Int. J. Numer. Meth. Eng. 87(1–5), 437–456 (2011)

    MATH  Google Scholar 

  475. Sohn, J.H.: Calculation effect of GPU parallel programing for planar multibody system dynamics. J. Korean Soc. Power Syst. Eng. 16(4), 12–16 (2012)

    MathSciNet  Google Scholar 

  476. Melanz, D., Khude, N., Jayakumar, P., et al.: A GPU parallelization of the absolute nodal coordinate formulation for applications in flexible multibody dynamics. In: ASME International Design Engineering Technical Conferences/Computers Information in Engineering Conference, Chicago, IL (2012)

  477. Cao, D.Z., Qiang, H.F., Ren, G.X.: Parallel computing studies of flexible multibody system dynamics using OpenMP and Pardiso. J. Tsinghua Univ. Sci. Technol. 52(11), 1643–1649 (2012)

    Google Scholar 

  478. Khude, N., Stanciulescu, I., Melanz, D., et al.: Efficient parallel simulation of large flexible body systems with multiple contacts. J. Comput. Nonlinear Dyn. 8(4), 041003 (2013)

    Google Scholar 

  479. Clauberg, J., Leistner, M., Ulbrich, H.: Hybrid-parallel calculation of Jacobians in multi-body dynamics. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, Portland, OR (2013)

  480. Zhang, J., Zhao, Y., Zhang, Y.H., et al.: Non-stationary random vibration of a coupled vehicle-slab track system using a parallel algorithm based on the pseudo excitation method. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 227(F3), 203–216 (2013)

    Google Scholar 

  481. Negrut, D., Tasora, A., Mazhar, H., et al.: Leveraging parallel computing in multibody dynamics. Multibody Syst. Dyn. 27(1), 95–117 (2012)

    MATH  Google Scholar 

  482. Negrut, D., Serban, R., Mazhar, H., et al.: Parallel computing in multibody system dynamics: why, when, and how. J. Comput. Nonlinear Dyn. 9(4), 041007 (2014)

    Google Scholar 

  483. Sun, W., Fan, X.G.: Parallel iterative algorithm for constrained multibody systems in mechanics. In: 33rd Chinese Control Conference (CCC). Nanjing, China (2014)

  484. Serban, R., Melanz, D., Li, A., et al.: A GPU-based preconditioned Newton-Krylov solver for flexible multibody dynamics. Int. J. Numer. Methods Eng. 102(9), 1585–1604 (2015)

    MathSciNet  MATH  Google Scholar 

  485. Hu, W., Tian, Q., Hu, H.Y.: Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH. Nonlinear Dyn. 84(4), 2447–2465 (2016)

    MathSciNet  Google Scholar 

  486. Yang, H.G., Rui, X.T., Liu, Y.X., et al.: Study on distributed parallel computing of transfer matrix method for multibody systems. J. Vib. Eng. 27(1), 9–15 (2014)

    Google Scholar 

  487. Gu, J.J., Rui, X.T., Chen, G.L., et al.: Distributed parallel computing of the recursive eigenvalue search in the context of transfer matrix method for multibody systems. Adv. Mech. Eng. 8(11), 1–15 (2016)

    Google Scholar 

  488. Shin, S., Park, J., Park, J.: Explicit formulation of multibody dynamics based on principle of dynamical balance and its parallelization. Multibody Syst. Dyn. 37(2), 175–193 (2016)

    MathSciNet  MATH  Google Scholar 

  489. Li, P., Liu, C., Tian, Q., et al.: Dynamics of a deployable mesh reflector of satellite antenna: parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 11(6), 061005 (2016)

    Google Scholar 

  490. Warwas, K., Tengler, S.: Dynamic optimization of multibody system using multithread calculations and a modification of variable metric method. J. Comput. Nonlinear Dyn. 12(5), 051031 (2017)

    Google Scholar 

  491. Wu, Q., Spiryagin, M., Cole, C.: Parallel computing scheme for three-dimensional long train system dynamics. J. Comput. Nonlinear Dyn. 12(4), 044502 (2017)

    Google Scholar 

  492. Han, S.L., Bauchau, O.A.: Parallel time-integration of flexible multibody dynamics based on Newton-waveform method. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE 2017). Cleveland, OH (2017)

  493. Liu, C., Ye, Z.S., Hu, H.Y.: An efficient parallel algorithm for flexible multibody systems based on domain decomposition method. Sci. Sin. Phys. Mech. Astron. 47(10): 104603-1–104603-11 (2017)

    Google Scholar 

  494. Ambrosio, J., Rauter, F., Pombo, J., et al.: Dynamics of high-speed train pantograph-catenary co-simulation of finite element and multibody codes. In: 2nd International Symposium on Computational Mechanics and 12th International Conference on the Enhancement and Promotion of Computational Methods in Engineering and Science. China, Hong Kong (2009)

  495. Massat, J.P., Laurent, C., Bianchi, J.P., et al.: Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Veh. Syst. Dyn. 52(1), 338–354 (2014)

    Google Scholar 

  496. Arnold, M.: Stability of sequential modular time integration methods for coupled multibody system models. J. Comput. Nonlinear Dyn. 5(3), 031003 (2010)

    Google Scholar 

  497. Gonzalez, F., Naya, M.A., Luaces, A., et al.: On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics. Multibody Syst. Dyn. 25(4), 461–483 (2011)

    MATH  Google Scholar 

  498. Pandey, J., Reddy, N.S., Ray, R., et al.: Multi-body dynamics of a swimming frog: A co-simulation approach. In: IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen, China (2013)

  499. Fancello, M., Masarati, P., Morandini, M.: Adding non-smooth analysis capabilities to general-purpose multibody dynamics by co-simulation. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE). Portland, OR (2013)

  500. Schweizer, B., Lu, D.X., Li, P.: Co-simulation method for solver coupling with algebraic constraints incorporating relaxation techniques. Multibody Syst. Dyn. 36(1), 1–36 (2016)

    MathSciNet  MATH  Google Scholar 

  501. Schneider, F., Burger, M., Arnold, M., et al.: A new approach for force-displacement co-simulation using kinematic coupling constraints. Z. Angew. Math. Mech. 97(9), 1147–1166 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research received the support of the Natural Science Foundation of China (Grant Nos: 11702292, 11605234). We are very grateful to the experts in the field of multibody dynamics for providing a large number of reference data and modification suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Tao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, B., Rui, X., Tao, L. et al. Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dyn 98, 1519–1553 (2019). https://doi.org/10.1007/s11071-019-05191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05191-3

Keywords

Navigation