Skip to main content
Log in

Subcritical Hopf and saddle-node bifurcations in hunting motion caused by cubic and quintic nonlinearities: experimental identification of nonlinearities in a roller rig

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Railway vehicles suffer from hunting motion, even when traveling below the critical speed obtained by linear analysis, due to the nonlinear characteristics of the wheel system. Nonlinear characteristics in Hopf bifurcations can be characterized as subcritical or supercritical, depending on whether the cubic nonlinearity is softening or hardening, respectively. In a system with softening cubic nonlinearity, third-order nonlinear analysis cannot detect nontrivial stable steady-state oscillations because they are affected by quintic nonlinearity. Therefore, in such a system, it is necessary to apply fifth-order nonlinear analysis to a system model in which quintic nonlinearity is taken into account. In this study, we investigated the cubic and quintic nonlinear phenomena in hunting motion with a roller rig that is widely used for hunting motion research. Previous experimental studies using a roller rig were restricted to the linear stability and the cubic nonlinear stability. We clarified that roller rig experiments can observe the hysteresis phenomenon and the existence of subcritical Hopf and saddle-node bifurcations, indicating that not only the cubic but also the quintic nonlinearity of the wheel system plays an important role. In addition, we obtained the normal form governing the nonlinear dynamics. We developed an experimental identification method to obtain the coefficients of the normal form. The validity of our method was confirmed by comparing the bifurcation diagrams obtained from the experimental time history and the normal form whose coefficients were experimentally identified using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Knothe, K., Bohm, F.: History of stability of railway and road vehicles. Veh. Syst. Dyn. 31, 283–323 (1999)

    Article  Google Scholar 

  2. Jin, X.S.: Key problems faced in high-speed train operation. Appl. Phys. Eng. 15, 936–945 (2014)

    Google Scholar 

  3. Dai, J., Ang, K.K., Jiang, D.: Moving element analysis of high-speed rail system accounting for hanging sleepers. In: MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201814805007 (2018)

    Article  Google Scholar 

  4. Han, L., Jing, L., Zhao, L.: Finite element analysis of the wheel-rail impact behavior induced by a wheel flat for high-speed trains: the influence of strain rate. Part F J. Rail Rapid Transit 232, 990–1004 (2018)

    Article  Google Scholar 

  5. Law, E.H., Cooperrider, N.K.: A survey of railway vehicle dynamics research. Dyn. Syst. 96, 132–146 (1974)

    Google Scholar 

  6. Wickens, A.H.: The dynamic stability of railway vehicle wheelsets and bogies having profiled wheels. Int. J. Solids Struct. 1, 319–341 (1965)

    Article  Google Scholar 

  7. Wickens, A.H.: Steering and dynamic stability of railway vehicles. Veh. Syst. Dyn. 5, 15–46 (1976)

    Article  Google Scholar 

  8. Wickens, A.H.: The dynamics of railway vehicles on straight track: fundamental considerations of lateral stability. In: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, vol. 180, pp. 29–44 (1965)

  9. Doyle, G.R., Prause, R.H.: Hunting stability of rail vehicles with torsionally flexible wheelsets. J. Eng. Ind. 99, 10–17 (1977)

    Article  Google Scholar 

  10. Lee, S., Cheng, Y.: Hunting stability analysis of high-speed railway vehicle trucks on tangent tracks. J. Sound Vib. 282, 881–898 (2005)

    Article  Google Scholar 

  11. Chi, M., Zhang, W., Zeng, J., Jin, X., Zhu, M.: Influence of hunting motion on ride quality of railway vehicle. J. Vib. Eng. 21, 639–643 (2008)

    Google Scholar 

  12. Baldovin, D., Sireteanu, T., Simona, N., Mitu, A.M.: Dissipation effect in the hunting motion stability of wheel set with elastic joints. Universitatea gEftimie Murguh Resita 17, 167–176 (2010)

    Google Scholar 

  13. Yabuno, H., Okamoto, T., Aoshima, N.: Effect of lateral linear stiffness on nonlinear characteristics of hunting motion of a railway wheelset. Meccanica 37, 555–568 (2002)

    Article  Google Scholar 

  14. Kaiser, I., Polach, O.: Comparison of methods analyzing bifurcation and hunting of complex rail vehicle models. Comput. Nonlinear Dyn. (2012). https://doi.org/10.1115/1.4006825

    Article  Google Scholar 

  15. He, X.: Hopf bifurcation at infinity with discontinuous nonlinearities. ANZIAM J. 33, 133–148 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Sakamoto, H., Yamamoto, M.: Effect of nonlinear creep force on railway truck dynamics. Bull. JSME 29, 3102–3108 (1986)

    Article  Google Scholar 

  17. Ahmadian, M., Yang, S.: Hopf bifurcation and hunting behavior in a rail wheelset with flange contact. Nonlinear Dyn. 15, 15–30 (1998)

    Article  Google Scholar 

  18. Hamid, M.S., Kourosh, H.S.: A survey of Hopf bifurcation analysis in nonlinear railway wheelset dynamics. J. Vibroeng. 14, 334–351 (2012)

    Google Scholar 

  19. Yokose, K., Igarashi, M.: Fundamental study on truck hunting considering non-linearity of creep force. Bull. JSME 29, 541–547 (1986)

    Article  Google Scholar 

  20. Banerjee, N., Karmakar, R.: Modelling of a free rail wheelset using non-linear creep force. IJHVS 21, 310–327 (2014)

    Article  Google Scholar 

  21. Guckenheimer J., Holmes P.: Local bifurcations. In: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol 42, chap. 3. Springer, New York, NY (1983). https://doi.org/10.1007/978-1-4612-1140-2_3

    Google Scholar 

  22. Cheng, L., Wei, X., Cao, H.: Two-parameter bifurcation analysis of limit cycles of a simplified railway wheelset model. Nonlinear Dyn. 93, 2415–2431 (2018)

    Article  Google Scholar 

  23. Kim, P., Jung, J., Seok, J.: A parametric dynamic study on hunting stability of full dual-bogie railway vehicle. Int. J. Precis. Eng. Manuf. 12, 505–519 (2011)

    Article  Google Scholar 

  24. Hamid, M.S., Kourosh, H.S.: Bifurcation analysis in hunting dynamical behavior in a railway bogie: using novel exact equivalent functions for discontinuous nonlinearities. Sci. Iran. 19, 1493–1501 (2012)

    Article  Google Scholar 

  25. Zhang, T., Dai, H.: Loss of stability of a railway wheel-set, subcritical or supercritical. Veh. Syst. Dyn. 55, 1731–1747 (2017)

    Article  Google Scholar 

  26. Kim, P., Seok, J.: Bifurcation analysis on the hunting behavior of a dual-bogie railway vehicle using the method of multiple scales. J. Sound Vib. 329, 4017–4039 (2010)

    Article  Google Scholar 

  27. Zhang, B., Zeng, J., Liu, W.: Research on stochastic stability and stochastic bifurcation of suspended wheelset. J. Mech. Sci. Technol. 29, 3097–3107 (2015)

    Article  Google Scholar 

  28. Uyulan, G., Gokasan, M., Bogosyan, S.: Dynamic investigation of the hunting motion of a railway bogie in a curved track via bifurcation analysis. Math. Probl. Eng. 1, 1–15 (2017)

    Article  Google Scholar 

  29. Zboinski, K., Dusza, M.: Self-exciting vibrations and Hopf’s bifurcation in non-linear stability analysis of rail vehicles in a curved track. Eur. J. Mech. 29, 190–203 (2010)

    Article  Google Scholar 

  30. Von Wagner, U.: Nonlinear dynamic behavior of a railway wheelset. Veh. Syst. Dyn. 47, 627–640 (2009)

    Article  Google Scholar 

  31. Chi, M., Wu, X.: Parameters study of Hopf bifurcation in railway vehicle system. Comput. Nonlinear Dyn. (2015). https://doi.org/10.1115/1.4027683

    Article  Google Scholar 

  32. Yamanaga, Y., Kido, K.: Hunting stability test of railway bogies on roller rigs and bifurcation. In: Dynamics and Design Conference. https://doi.org/10.1299/jsmedmc.2017.304 (2017)

    Article  Google Scholar 

  33. Dong, H., Zeng, J., Xie, J., Jia, L.: Bifurcation/instability forms of high speed railway vehicles. Sci. China Technol. Sci. 56, 1685–1696 (2013)

    Article  Google Scholar 

  34. Jaschinski, A., Chollet, H., Iwnicki, S.D., Wickens, A.H., Von Wurzen, J.: The application of the roller rigs to railway vehicle dynamics. Veh. Syst. Dyn. 31, 345–392 (1999)

    Article  Google Scholar 

  35. Ejiri, K., Michitsuji, Y., Suda, Y., Lin, S., Sugiyama, H.: Running stability analysis of independently rotating wheelset with negative tread conicity using scaled-model roller rig. JSME 79, 4950–4962 (2013)

    Article  Google Scholar 

  36. Myamlin, S., Kalivoda, J., Neduzha, L.: Testing of railway vehicles using roller rigs. Procedia Eng. 187, 688–695 (2017)

    Article  Google Scholar 

  37. Iwnicki, S.D., Wickens, A.H.: Validation of a Matlab railway vehicle simulation using a scale roller rig. Veh. Syst. Dyn. 30, 257–270 (1998)

    Article  Google Scholar 

  38. Yamanaga, Y., Watanabe, N.: Experimental investigation of global stability against hunting oscillation using a real bogie. Trans. JSME (The Japanese Journal of Educational Research) 84, 18–00109 (2018)

    Google Scholar 

  39. Nayfeh, A.H.: The Method of Normal Forms. Wiley, Hoboken (2011)

    Book  Google Scholar 

  40. Pirbodaghi, T., Hoseini, S.H., Ahmadian, M.T., Farrahi, G.H.: Duffing equations with cubic and quintic nonlinearities. Comput. Math. Appl. 57, 500–506 (2009)

    Article  MathSciNet  Google Scholar 

  41. Iwnicki, S.D.: Handbook of Railway Vehicle Dynamics. Taylor and Francis, Didcot (2006)

    Book  Google Scholar 

  42. Nana, B., Yamgoue, S.B., Tchitnga, R., Woafo, P.: Nonlinear dynamics of a sinusoidally driven lever in repulsive magnetic fields. Nonlinear Dyn. 91, 55–66 (2018)

    Article  Google Scholar 

  43. Kwuimy, C.K., Woafo, P.: Experimental realization and simulations a self-sustained macro electromechanical system. Mech. Res. Commun. 37, 106–110 (2010)

    Article  Google Scholar 

  44. De Pater, A.D.: The exact theory of the motion of a single wheelset on a perfectly straight track. Veh. Syst. Dyn. 8, 182–184 (1979)

    Article  Google Scholar 

  45. True, H.: Dynamics of a rolling wheelset. Appl. Mech. Rev. 46, 438–444 (1993)

    Article  Google Scholar 

  46. Knudsen, C., Feldberg, R., True, H.: Bifurcations and chaos in a model of a rolling railway wheelset. Philos. Trans. R. Soc. Lond. A 338, 455–469 (1992)

    Article  Google Scholar 

  47. Zhang, T., Dai, H.: Bifurcation analysis of high-speed railway wheel-set. Nonlinear Dyn. 83, 1511–1528 (2016)

    Article  MathSciNet  Google Scholar 

  48. Steiner, W., Steindl, A., Troger, H.: Center manifold approach to the control of a tethered satellite system. Appl. Math. Comput. 70, 315–327 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyan Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Hysteresis width depending on the amount of surface roughness or disturbance

Disturbances created from surface roughness can change the linear and nonlinear critical speeds, that is, the width of the hysteresis region, as follows. Figure 11 is a schematic bifurcation diagram. In the hysteresis region, the unstable steady-state amplitude is the threshold determining whether the amplitude grows up to the stable nontrivial steady-state amplitude or decreases to the zero amplitude. Therefore, when the disturbance is small, as in Fig. 11a, where the disturbance is denoted by short thick arrows, the linear and nonlinear critical speeds, \({v_\mathrm{c}}\) and \({v_\mathrm{n}}\), are approximately equal to those theoretically obtained values under the assumption of an infinitely small disturbance. At these critical speeds, the amplitude grows or decreases along the thin arrow.

In contrast, under a large disturbance, as in Fig. 11b, where the disturbance is denoted by long thick arrows, the linear and nonlinear critical speeds decrease and increase, respectively. Therefore, the threshold becomes narrower than it is for a small disturbance. As one application of these nonlinear characteristics, measurement of the width of threshold can prove an identical method for determining the amount of disturbance.

Fig. 11
figure 11

Hysteresis width depending on the amount of surface roughness, that is, disturbance, in the roller rig. \({\varDelta v_\mathrm{cr}}\) indicates the hysteresis width under different disturbance, where \({\varDelta v_{\text {cr-a}}>\varDelta v_{\text {cr-b}}}\). The solid and dashed curves denote the stable and unstable steady-state amplitudes, respectively

Appendix B: Eigenvalues of the equation of motion

Matrix \(\varvec{A}\) consists of the coefficients of the linear terms, and vector \({\varvec{N}(\varvec{x},\epsilon )}\) includes the cubic and quintic nonlinear terms and the detuning term denoted by the second term of Eq. (5). At the linear critical speed (\({\epsilon =0}\)), the four eigenvalues of the matrix \(\varvec{A}\) include a pair of pure imaginary eigenvalues as

$$\begin{aligned} \pm \, i\omega =\pm \, i\sqrt{\frac{d_{11}k_{22}+d_{22}k_{11}}{d_{11}+d_{22}}}, \end{aligned}$$
(B-1)

and one complex conjugate pair of eigenvalues with a negative real part as

$$\begin{aligned} \lambda _R\pm \, i\lambda _I=-\frac{1}{2}C\pm \,\frac{1}{2}i\sqrt{4D-C^2}, \end{aligned}$$
(B-2)

where

$$\begin{aligned} C&=\frac{d_{11}+d_{22}}{v_\mathrm{c}^*},\nonumber \\ D&=\frac{d_{11}d_{22}}{v_\mathrm{c}^{*2}}+\frac{k_{11}d_{11}+k_{22}d_{22}}{d_{11}+d_{22}}. \end{aligned}$$
(B-3)

Appendix C: Reduction in nonlinear terms of the equation of r

We obtain the equation governing \({\eta }\) under the consideration of different orders from Eq. (21). The linear part (\({O(\epsilon ^{1/2})}\)) of Eq. (21) is obtained as:

$$\begin{aligned} \dot{\eta }=i\omega \eta , \end{aligned}$$
(C-1)

and the cubic part (\({O(\epsilon ^{3/2})}\)) of Eq. (21) is obtained as

$$\begin{aligned} \dot{\eta }&=i\omega q+\hat{N}_1(O(\eta ^3))+\frac{\partial q}{\partial \eta }(-i\omega \eta )+\frac{\partial q}{\partial \bar{\eta }}(i\omega \bar{\eta })\nonumber \\&=D_1\epsilon \eta +(D_2+2i\omega \varGamma _2)\epsilon \bar{\eta } +(D_3-2i\omega \varGamma _3)\eta ^3\nonumber \\&\quad +\,D_4\eta ^2\bar{\eta }+(D_5+2i\omega \varGamma _5) \eta \bar{\eta }^2+(D_6+4i\omega \varGamma _6)\bar{\eta }^3. \end{aligned}$$
(C-2)

To reduce the number of nonlinear terms in the equation, we consider

$$\begin{aligned}&(D_2+2i\omega \varGamma _2)\epsilon \bar{\eta }=0, (D_3-2i\omega \varGamma _3)\eta ^3=0,\nonumber \\&(D_5+2i\omega \varGamma _5)\eta \bar{\eta }^2=0, (D_6+4i\omega \varGamma _6)\bar{\eta }^3=0. \end{aligned}$$
(C-3)

Therefore, the cubic nonlinear coefficients of Eq. (20) are selected as

$$\begin{aligned} \varGamma _2=-\frac{D_2}{2i\omega }, \varGamma _3=\frac{D_3}{2i\omega }, \varGamma _5=-\frac{D_5}{2i\omega }, \varGamma _6=-\frac{D_6}{4i\omega }, \end{aligned}$$
(C-4)

and we select \({\varGamma _1}\), \({\varGamma _4}\) as

$$\begin{aligned} \varGamma _1=0, \varGamma _4=0. \end{aligned}$$
(C-5)

Then, Eq. (C-2) is simplified as follows:

$$\begin{aligned} \dot{\eta }=D_1\varepsilon \eta +D_4\eta ^2\bar{\eta }. \end{aligned}$$
(C-6)

The quintic part (\({O(\epsilon ^{5/2})}\)) of Eq. (21) is obtained as follows:

$$\begin{aligned} \dot{\eta }&=i\omega q-(i\omega \eta +D_1\epsilon \eta +D_4\eta ^2\bar{\eta }) \frac{\partial q}{\partial \eta }\nonumber \\&\quad +\,(-i\omega \bar{\eta }+\bar{D}_1\epsilon \bar{\eta }+\bar{D}_4\eta \bar{\eta }^2) \frac{\partial q}{\partial \bar{\eta }}+\hat{N}_1(O(\eta ^5))\nonumber \\&=(D_7+D_2\bar{\varGamma }_2)\epsilon ^2\eta +(2i\omega \varGamma _8+D_8+D_1\varGamma _2-\bar{D}_1\varGamma _2)\epsilon ^2\bar{\eta }\nonumber \\&\quad +\,(-2i\omega \varGamma _9+D_9-2D_1\varGamma _3+D_2\bar{\varGamma }_6+D_4\bar{\varGamma }_2)\epsilon \eta ^3\nonumber \\&\quad +\,(D_{10}+D_2\bar{\varGamma }_5+3D_3\varGamma _2+2D_5\bar{\varGamma }_2)\epsilon \eta ^2\bar{\eta }\nonumber \\&\quad +\,(2i\omega \varGamma _{11}+D_{11}-2\bar{D}_1\varGamma _5-\bar{D}_4\varGamma _2+2D_4\varGamma _2+3D_6\bar{\varGamma }_2)\nonumber \\&\qquad \epsilon \eta \bar{\eta }^2\nonumber \\&\quad +\,(4i\omega \varGamma _{12}+D_{12}-3\bar{D}_1\varGamma _6+D_1\varGamma _6+D_2\bar{\varGamma }_3)\epsilon \bar{\eta }^3\nonumber \\&\quad +\,(-4i\omega \varGamma _{13}+D_{13}+3D_3\varGamma _3+D_4\bar{\varGamma }_6)\eta ^5\nonumber \\&\quad +\,(-2i\omega \varGamma _{14}+D_{14}-D_4\varGamma _3+D_4\bar{\varGamma }_5+2D_5\bar{\varGamma }_6)\eta ^4\bar{\eta }\nonumber \\&\quad +\,(D_{15}+3D_3\varGamma _5-D_5\bar{\varGamma }_6+2D_5\bar{\varGamma }_5+3D_6\bar{\varGamma }_6)\eta ^3\bar{\eta }^2\nonumber \\&\quad +\,(2i\omega \varGamma _{16}+D_{16}+D_4\varGamma _5-2\bar{D}_4\varGamma +3D_3\varGamma _6+D_4\bar{\varGamma }_3\nonumber \\&\quad +\,D_5\bar{\varGamma }_5+2D_5\varGamma _5+3D_6\bar{\varGamma }_5)\eta ^2\bar{\eta }^3\nonumber \\&\quad +\,(4i\omega \varGamma _{17}+D_{17}-3\bar{D}_4\varGamma _6+2D_4\varGamma _6+2D_5\bar{\varGamma }_3)\eta \bar{\eta }^4\nonumber \\&\quad +\,(6i\omega \varGamma _{18}+D_{18}+D_5\bar{\varGamma }_3+3D_6\bar{\varGamma }_3)\bar{\eta }^5. \end{aligned}$$
(C-7)

We consider that

$$\begin{aligned}&(2i\omega \varGamma _8+D_8+D_1\varGamma _2-\bar{D}_1\varGamma _2)\epsilon ^2\bar{\eta }=0,\nonumber \\&\qquad (-2i\omega \varGamma _9+D_9-2D_1\varGamma _3+D_2\bar{\varGamma }_6+D_4\bar{\varGamma }_2)\epsilon \eta ^3=0,\nonumber \\&\qquad (2i\omega \varGamma _{11}+D_{11}-2\bar{D}_1\varGamma _5-\bar{D}_4\varGamma _2+2D_4\varGamma _2+3D_6\bar{\varGamma }_2)\nonumber \\&\qquad \quad \epsilon \eta \bar{\eta }^2=0,\nonumber \\&\qquad (4i\omega \varGamma _{12}+D_{12}-3\bar{D}_1\varGamma _6+D_1\varGamma _6+D_2\bar{\varGamma }_3)\epsilon \bar{\eta }^3=0,\nonumber \\&\qquad (-4i\omega \varGamma _{13}+D_{13}+3D_3\varGamma _3+D_4\bar{\varGamma }_6)\eta ^5=0,\nonumber \\&\qquad (-2i\omega \varGamma _{14}+D_{14}-D_4\varGamma _3+D_4\bar{\varGamma }_5+2D_5\bar{\varGamma }_6)\eta ^4\bar{\eta }=0,\nonumber \\&\qquad (2i\omega \varGamma _{16}+D_{16}+D_4\varGamma _5-2\bar{D}_4\varGamma +3D_3\varGamma _6+D_4\bar{\varGamma }_3\nonumber \\&\quad \quad +\,D_5\bar{\varGamma }_5+2D_5\varGamma _5+3D_6\bar{\varGamma }_5)\eta ^2\bar{\eta }^3=0,\nonumber \\&\qquad (4i\omega \varGamma _{17}+D_{17}-3\bar{D}_4\varGamma _6+2D_4\varGamma _6+2D_5\bar{\varGamma }_3)\eta \bar{\eta }^4=0,\nonumber \\&\qquad (6i\omega \varGamma _{18}+D_{18}+D_5\bar{\varGamma }_3+3D_6\bar{\varGamma }_3)\bar{\eta }^5=0. \end{aligned}$$
(C-8)

Therefore, the quintic nonlinear coefficients of Eq. (20) are selected as

$$\begin{aligned} \varGamma _8&=-\,(D_8+D_1\varGamma _2-\bar{D}_1\varGamma _2)/(2i\omega ),\nonumber \\ \varGamma _9&=(D_9-2D_1\varGamma _3+D_2\bar{\varGamma }_6+D_4\bar{\varGamma }_2)/(2i\omega ),\nonumber \\ \varGamma _{11}&=-\,(D_{11}-2\bar{D}_1\varGamma _5-\bar{D}_4\varGamma _2+2D_4\varGamma _2+3D_6\bar{\varGamma }_2)/(2i\omega ),\nonumber \\ \varGamma _{12}&=-\,(D_{12}-3\bar{D}_1\varGamma _6+D_1\varGamma _6+D_2\bar{\varGamma }_3)/(4i\omega ),\nonumber \\ \varGamma _{13}&=(D_{13}+3D_3\varGamma _3+D_4\bar{\varGamma }_6)/(4i\omega ),\nonumber \\ \varGamma _{14}&=(D_{14}-D_4\varGamma _3+D_4\bar{\varGamma }_5+2D_5\bar{\varGamma }_6)/(2i\omega ),\nonumber \\ \varGamma _{16}&=-\,(D_{16}+D_4\varGamma _5-2\bar{D}_4\varGamma +3D_3\varGamma _6+D_4\bar{\varGamma }_3\nonumber \\&\quad +\,D_5\bar{\varGamma }_5+2D_5\varGamma _5+3D_6\bar{\varGamma }_5)/(2i\omega ),\nonumber \\ \varGamma _{17}&=-\,(D_{17}-3\bar{D}_4\varGamma _6+2D_4\varGamma _6+2D_5\bar{\varGamma }_3)/(4i\omega ),\nonumber \\ \varGamma _{18}&=-\,(D_{18}+D_5\bar{\varGamma }_3+3D_6\bar{\varGamma }_3)/(6i\omega ). \end{aligned}$$
(C-9)

Then, we select \({\varGamma _7}\), \({\varGamma _{10}}\), and \({\varGamma _{15}}\) as

$$\begin{aligned} \varGamma _7=0, \varGamma _{10}=0,\varGamma _{15}=0. \end{aligned}$$
(C-10)

Finally, Eq. (C-7) is simplified:

$$\begin{aligned} \dot{\eta }=\varGamma _7'\varepsilon ^2\eta +\varGamma _{10}' \varepsilon \eta ^2\bar{\eta }+\varGamma _{15}'\eta ^3\bar{\eta }^2, \end{aligned}$$
(C-11)

where

$$\begin{aligned} \varGamma _7'&=D_7+D_2\bar{\varGamma }_2,~\varGamma _{10}'=D_{10}+D_2\bar{\varGamma }_5+3D_3\varGamma _2+2D_5\bar{\varGamma }_2,\nonumber \\ \varGamma _{15}'&=D_{15}+3D_3\varGamma _5+D_5\bar{\varGamma }_6+2D_5\bar{\varGamma }_5+3D_6\bar{\varGamma }_6. \end{aligned}$$
(C-12)

Therefore, the equation of \({\eta }\) in consideration of quintic nonlinearity (\({O(\epsilon ^{5/2})}\)) can be obtained as follows:

$$\begin{aligned} \dot{\eta }&=i\omega \eta +D_1\varepsilon \eta +D_4\eta ^2\bar{\eta }\nonumber \\&\quad +\,\varGamma _7'\varepsilon ^2\eta +\varGamma _{10}'\varepsilon \eta ^2\bar{\eta } +\varGamma _{15}'\eta ^3\bar{\eta }^2. \end{aligned}$$
(C-13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Yabuno, H. Subcritical Hopf and saddle-node bifurcations in hunting motion caused by cubic and quintic nonlinearities: experimental identification of nonlinearities in a roller rig. Nonlinear Dyn 98, 657–670 (2019). https://doi.org/10.1007/s11071-019-05220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05220-1

Keywords

Navigation