Skip to main content
Log in

Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Brownjohn, J.M.W., Xia, P.Q.: Dynamic assessment of curved cable-stayed bridge by model updating. J. Struct. Eng. 126(2), 252–260 (2000)

    Article  Google Scholar 

  2. Ouni, M.H.E., Kahla, N.B., Preumont, A.: Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation. Eng. Struct. 45, 244–256 (2012)

    Article  Google Scholar 

  3. Wang, X., Wu, Z.S.: Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges. Compos. Struct. 92(10), 2582–2590 (2010)

    Article  Google Scholar 

  4. Wang, P.H., Lin, H.T., Tang, T.Y.: Study on nonlinear analysis of a highly redundant cable-stayed bridge. Comput. Struct. 80(2), 165–182 (2002)

    Article  Google Scholar 

  5. Ni, Y.Q., Zheng, G., Ko, J.M.: Nonlinear periodically forced vibration of stay cables. J. Vib. Acoust. 126(2), 245–252 (2004)

    Article  Google Scholar 

  6. Irvine, H.M.: Cable Structures. Dover Publications, New York (1992)

    Google Scholar 

  7. Irvine, H.M., Caughey, T.: The linear theory of free vibrations of a suspended cable. P. R. Soc. A Math. Phys. 341(1626), 299–315 (1974)

    Article  Google Scholar 

  8. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Nonlinear Mech. 19(1), 39–52 (1984)

    Article  MATH  Google Scholar 

  9. Main, J.A., Jones, N.P.: Free vibrations of taut cable with attached damper. II: nonlinear damper. J. Eng. Mech. 128(10), 1072–1081 (2002)

    Article  Google Scholar 

  10. Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables, part I: theoretical formulation and model validation. Nonlinear Dyn. 48(3), 231–252 (2007)

    Article  MATH  Google Scholar 

  11. Srinil, N., Rega, G.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: internal resonance activation, reduced-order models and nonlinear normal modes. Nonlinear Dyn. 48(3), 253–274 (2007)

    Article  MATH  Google Scholar 

  12. Srinil, N., Rega, G.: The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables. Int. J. Nonlinear Mech. 42(1), 180–195 (2007)

    Article  MATH  Google Scholar 

  13. Srinil, N., Rega, G.: Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables. J. Sound Vib. 310(1–2), 230–242 (2008)

    Article  Google Scholar 

  14. Srinil, N., Rega, G.: Space-time numerical simulation and validation of analytical predictions for nonlinear forced dynamics of suspended cables. J. Sound Vib. 315(3), 394–413 (2008)

    Article  Google Scholar 

  15. Wang, L.H., Zhao, Y.Y.: Non-linear planar dynamics of suspended cables investigated by the continuation technique. Eng. Struct. 29(6), 1135–1144 (2007)

    Article  Google Scholar 

  16. Kang, H.J., Zhao, Y.Y., Zhu, H.P.: Linear and nonlinear dynamics of suspended cable considering bending stiffness. J. Vib. Control 21(8), 1487–1505 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lenci, S., Ruzziconi, L.: Nonlinear phenomena in the single-mode dynamics of a cable-supported beam. Int. J. Bifurc. Chaos 19(3), 923–945 (2009)

    Article  MathSciNet  Google Scholar 

  18. Huang, K., Feng, Q., Yin, Y.J.: Nonlinear vibration of the coupled structure of suspended-cable-stayed beam-1:2 internal resonance. Acta Mech. Solida Sin. 27(5), 467–476 (2014)

    Article  Google Scholar 

  19. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40(18), 4729–4748 (2007)

    Article  MATH  Google Scholar 

  20. Wang, Z.Q., Sun, C.S., Zhao, Y.Y., Yi, Z.Z.: Modeling and nonlinear modal characteristics of the cable-stayed beam. Eur. J. Mech. A/Solids. 47, 58–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kang, H.J., Guo, T.D., Zhao, Y.Y., Fu, W.B., Wang, L.H.: Dynamic modeling and in-plane 1:1:1 internal resonance analysis of cable-stayed bridge. Eur. J. Mech. A/Solids 62, 94–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cong, Y.Y., Kang, H.J., Guo, T.D.: Planar multimodal 1:2:2 internal resonance analysis of cable-stayed bridge. Mech. Syst. Signal Process. 120, 505–523 (2019)

    Article  Google Scholar 

  23. Cao, D.Q., Song, M.T., Zhu, W.D., Tucker, R.W., Wang, C.H.-T.: Modeling and analysis of the in-plane vibration of a complex cable-stayed bridge. J. Sound Vib. 331(26), 5685–5714 (2012)

    Article  Google Scholar 

  24. Song, M.T., Cao, D.Q., Zhu, W.D., Bi, Q.S.: Dynamic response of a cable-stayed bridge subjected to a moving vehicle load. Acta Mech. 227(10), 2925–2945 (2016)

    Article  MathSciNet  Google Scholar 

  25. Gennari-Santori, A., Gentile, C.: Dynamic testing and modeling of a 30-years’ old cable-stayed bridge. Struct. Eng. Int. 16(1), 39–43 (2006)

    Article  Google Scholar 

  26. El Ouni, M.H., Ben Kahla, N., Preumont, A.: Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation. Eng. Struct. 45, 244–256 (2012)

    Article  Google Scholar 

  27. El Ouni, M.H., Ben Kahla, N.: Numerical study of the active tendon control of a cable-stayed bridge in a construction phase. Shock Vib. 2014, 1–10 (2014)

    Article  Google Scholar 

  28. Rega, G., Alaggio, R., Benedettini, F.: Experimental investigation of the nonlinear response of a hanging cable. Part I: local analysis. Nonlinear Dyn. 14(2), 89–117 (1997)

    Article  Google Scholar 

  29. Wilson, J.C., Liu, T.: Ambient vibration measurements on a cable-stayed bridge. Earthq. Eng. Struct. Dyn. 20(8), 723–747 (1991)

    Article  Google Scholar 

  30. Ren, W.X., Peng, X.L., Lin, Y.Q.: Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge. Eng. Struct. 27(4), 535–548 (2005)

    Article  Google Scholar 

  31. Macdonald, J.H.G., Daniell, W.E.: Variation of modal parameters of a cable-stayed bridge identified from ambient vibration measurements and FE modelling. Eng. Struct. 27(13), 1916–1930 (2005)

    Article  Google Scholar 

  32. Sun, C.S., Zhao, Y.B., Peng, J., Zhao, Y.Y.: Multiple internal resonances and modal interaction processes of a cable-stayed bridge physical model subjected to an invariant single-excitation. Eng. Struct. 172, 938–955 (2018)

    Article  Google Scholar 

  33. Benedettini, F., Rega, G.: Experimental investigation of the nonlinear response of a hanging cable. Part II: global analysis. Nonlinear Dyn. 14(2), 119–138 (1997)

    Article  Google Scholar 

  34. Caetano, E., Cunha, A., Gattulli, V., Lepidi, M.: Cable-deck dynamic interactions at the international Guadiana bridge: on-site measurements and finite element modelling. Struct. Control Health Monit. 15, 237–264 (2008)

    Article  Google Scholar 

  35. Gentile, C.: Deflection measurement on vibrating stay cables by non-contact microwave interferometer. NDT E Int. 43, 231–240 (2010)

    Article  Google Scholar 

  36. Kim, H.K., Kim, K.T., Lee, H., Kim, S.: Performance of unpretensioned wind stabilizing cables in the construction of a cable-stayed bridge. J. Bridge Eng. 18, 722–734 (2012)

    Article  Google Scholar 

  37. Calçada, R., Cunha, A., Delgado, R.: Analysis of traffic-induced vibrations in a cable-stayed bridge. Part I: experimental assessment. J. Bridge Eng. 10, 370–385 (2005)

    Article  Google Scholar 

  38. Cong, Y.Y., Kang, H.J.: Planar nonlinear dynamic behavior of a cable-stayed bridge under excitation of tower motion. Eur. J. Mech. A/Solids 76, 91–107 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The program is funded by the National Natural Science Foundation of China (11572117 and 11872176) and Hunan Provincial Communications Department Project (201428). The writers wish to acknowledge the team of academician Z.Q. Chen who provide actual test data of Sutong Bridge. Interesting comments and criticism by the reviewers are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjun Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Kang, H., Chen, J. et al. Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge. Nonlinear Dyn 98, 1247–1266 (2019). https://doi.org/10.1007/s11071-019-05259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05259-0

Keywords

Navigation