Skip to main content
Log in

Super-harmonic resonances of a rotating pre-deformed blade subjected to gas pressure

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present work investigates the super-harmonic resonances combined with 2:1 internal resonance of a rotating blade subjected to strong gas pressure. The dynamic model includes the effect of the initial curved axis of the blade induced by the thermal gradient. The dimensionless gas excitation amplitude is assumed to be the same magnitude of the dimensionless vibration displacement. The vibration of the blade in the plane of rotation and the plane perpendicular to it are described by a set of coupled ordinary differential equations with quadratic and cubic nonlinearities. The steady-state response of the rotating blade is calculated via the method of multiple scales. The stabilities of the steady-state responses are determined via Lyapunov theory. Parametric studies are performed to clarify the influences of system parameters on dynamic response and unstable regions. The various typical phenomena including jump, hysteresis and saturation are observed in the dynamic model. The stable and unstable regions of the solution are analyzed in the plane of external detuning parameter and excitation amplitude. The evaluation of the blade dynamic response is revealed in the unstable region. The theoretical results obtained via the method of multiple scales coincide with the numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Sutherland, R.L.: Bending vibration of a rotating blade vibrating in the plane of rotation. ASME J. Appl. Mech. 16(4), 389–394 (1949)

    Google Scholar 

  2. Stafford, R.O., Giurgiutiu, V.: Semi-analytic methods for rotating timoshenko beams. Int. J. Mech. Sci. 17(11), 719–727 (1975)

    MATH  Google Scholar 

  3. Pnueli, D.: Natural bending frequency comparable to rotational frequency in rotating cantilever beam. J. Appl. Mech. 39(2), 602–604 (1972)

    Google Scholar 

  4. Hodges, D.Y., Rutkowski, M.Y.: Free-vibration analysis of rotating beams by a variable-order finite-element method. AIAA J. 19(11), 1459–1466 (1981)

    MATH  Google Scholar 

  5. Putter, S., Manor, H.: Natural frequencies of radial rotating beams. J. Sound Vib. 56(2), 175–185 (1978)

    MATH  Google Scholar 

  6. Rao, J.S.: Turbomachine Blade Vibration. Wiley, New York (1991)

    Google Scholar 

  7. Surace, G., Anghel, V., Mares, C.: Coupled bending–bending–torsion vibration analysis of rotating pretwisted blades: an integral formulation and numerical examples. J. Sound Vib. 206(4), 473–486 (1997)

    Google Scholar 

  8. Yoo, H.H., Park, J.H., Park, J.: Vibration analysis of rotating pre-twisted blades. Comput. Struct. 79(19), 1811–1819 (2001)

    Google Scholar 

  9. Banerjee, J.R.: Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J. Sound Vib. 233(5), 857–875 (2000)

    MATH  Google Scholar 

  10. Banerjee, J.R.: Frequency equation and mode shape formulae for composite timoshenko beams. Compos. Struct. 51(4), 381–388 (2001)

    MathSciNet  Google Scholar 

  11. Banerjee, J.R., Jackson, D.R.: Free vibration of a rotating tapered rayleigh beam: a dynamic stiffness method of solution. Comput. Struct. 124, 11–20 (2013)

    Google Scholar 

  12. Banerjee, J.R., Su, H., Jackson, D.R.: Free vibration of rotating tapered beams using the dynamic stiffness method. J. Sound Vib. 298(4–5), 1034–1054 (2006)

    Google Scholar 

  13. Piovan, M.T., Sampaio, R.: A study on the dynamics of rotating beams with functionally graded properties. J. Sound Vib. 327(1–2), 134–143 (2009)

    Google Scholar 

  14. Sakar, G., Sabuncu, M.: Dynamic stability analysis of pretwisted aerofoil cross-section blade packets under rotating conditions. Int. J. Mech. Sci. 50(1), 1–13 (2008)

    MATH  Google Scholar 

  15. Sinha, S.K., Turner, K.E.: Natural frequencies of a pre-twisted blade in a centrifugal force field. J. Sound Vib. 330(11), 2655–2681 (2011)

    Google Scholar 

  16. Ansari, M., Esmailzadeh, E., Jalili, N.: Exact frequency analysis of a rotating cantilever beam with tip mass subjected to torsional–bending vibrations. J. Vib. Acoust. 133(4), 041003 (2011)

    Google Scholar 

  17. Oh, Y., Yoo, H.H.: Vibration analysis of a rotating pre-twisted blade considering the coupling effects of stretching, bending, and torsion. J. Sound Vib. 431, 20–39 (2018)

    Google Scholar 

  18. Lacarbonara, W., Arvin, H., Bakhtiari-Nejad, F.: A geometrically exact approach to the overall dynamics of elastic rotating blades-part 1: linear modal properties. Nonlinear Dyn. 70(1), 659–675 (2012)

    MathSciNet  Google Scholar 

  19. Chen, J., Li, Q.S.: Vibration characteristics of a rotating pre-twisted composite laminated blade. Compos. Struct. 208, 78–90 (2019)

    Google Scholar 

  20. Li, L., Zhang, D.G.: Free vibration analysis of rotating functionally graded rectangular plates. Compos. Struct. 136, 493–504 (2016)

    Google Scholar 

  21. Sun, J., Kari, L., Arteaga, I.L.: A dynamic rotating blade model at an arbitrary stagger angle based on classical plate theory and the hamilton’s principle. J. Sound Vib. 332(5), 1355–1371 (2013)

    Google Scholar 

  22. Tomar, J.S., Jain, R.: Thermal effect on frequencies of coupled vibrations of pretwisted rotating beams. AIAA J. 23(8), 1293–1296 (1985)

    MATH  Google Scholar 

  23. Song, O., Librescu, L., Oh, S.Y.: Dynamics of pretwisted rotating thin-walled beams operating in a temperature environment. J. Therm. Stress. 24(3), 255–279 (2001)

    Google Scholar 

  24. Na, S., Yoon, G.C., Lee, B.H., Marzocca, P., Librescu, L.: Dynamic response control of rotating composite booms under solar radiation. J. Therm. Stress. 32(1–2), 21–40 (2009)

    Google Scholar 

  25. Librescu, L., Oh, S.Y., Song, O., Kang, H.S.: Dynamics of advanced rotating blades made of functionally graded materials and operating in a high-temperature field. J. Eng. Math. 61(1), 1–16 (2008)

    MATH  Google Scholar 

  26. Zhang, B., Li, Y.M., Lu, W.Z.: Dynamic characteristics of rotating pretwisted clamped–clamped beam under thermal stress. J. Mech. Sci. Technol. 30(9), 4031–4042 (2016)

    Google Scholar 

  27. Qin, Y., Li, X., Yang, E.C., Li, Y.H.: Flapwise free vibration characteristics of a rotating composite thin-walled beam under aerodynamic force and hygrothermal environment. Compos. Struct. 153, 490–503 (2016)

    Google Scholar 

  28. Georgiades, F., Latalski, J., Warminski, J.: Equations of motion of rotating composite beam with a nonconstant rotation speed and an arbitrary preset angle. Meccanica 49(8), 1833–1858 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Latalski, J., Warminski, J., Rega, G.: Bending-twisting vibrations of a rotating hub-thin-walled composite beam system. Math. Mech. Solids 22(6), 1303–1325 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Arvin, H., Lacarbonara, W., Bakhtiari-Nejad, F.: A geometrically exact approach to the overall dynamics of elastic rotating blades-part 2: flapping nonlinear normal modes. Nonlinear Dyn. 70(3), 2279–2301 (2012)

    MathSciNet  Google Scholar 

  31. Arvin, H., Bakhtiari-Nejad, F.: Nonlinear free vibration analysis of rotating composite timoshenko beams. Compos. Struct. 96, 29–43 (2013)

    Google Scholar 

  32. Arvin, H., Bakhtiari-Nejad, F.: Nonlinear modal interaction in rotating composite timoshenko beams. Compos. Struct. 96, 121–134 (2013)

    Google Scholar 

  33. Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68(4), 487–504 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Yao, M.H., Zhang, W., Chen, Y.P.: Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mech. 225(12), 3483–3510 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, X.H., Chen, F.Q., Zhang, B.Q., Jing, T.Y.: Local bifurcation analysis of a rotating blade. Appl. Math. Model. 40(5–6), 4023–4031 (2016)

    MathSciNet  Google Scholar 

  36. Zou, D.L., Rao, Z.S., Ta, N.: Coupled longitudinal-transverse dynamics of a marine propulsion shafting under superharmonic resonances. J. Sound Vib. 346, 248–264 (2015)

    Google Scholar 

  37. Zou, D., Liu, L., Rao, Z., Ta, N.: Coupled longitudinal-transverse dynamics of a marine propulsion shafting under primary and internal resonances. J. Sound Vib. 372, 299–316 (2016)

    Google Scholar 

  38. Zhang, B., Li, Y.M.: Nonlinear vibration of rotating pre-deformed blade with thermal gradient. Nonlinear Dyn. 86(1), 459–478 (2016)

    Google Scholar 

  39. Zhang, B., Zhang, Y.-L., Yang, X.-D., Chen, L.-Q.: Saturation and stability in internal resonance of a rotating blade under thermal gradient. J. Sound Vib. 440(3), 34–50 (2019)

    Google Scholar 

  40. Inoue, T., Ishida, Y., Kiyohara, T.: Nonlinear vibration analysis of the wind turbine blade (occurrence of the superharmonic resonance in the out of plane vibration of the elastic blade). ASME J. Vib. Acoust. 134, 3 (2012)

    Google Scholar 

  41. Zeng, J., Chen, K.K., Ma, H., Duan, T.T., Wen, B.C.: Vibration response analysis of a cracked rotating compressor blade during run-up process. Mech. Syst. Siganl Process. 118, 568–583 (2019)

    Google Scholar 

  42. Yao, M., Ma, L., Zhang, W.: Nonlinear dynamics of the high-speed rotating plate. Int. J. Aerosp. Eng. 2018, 23 (2018)

    Google Scholar 

  43. Ramakrishnan, V., Feeny, B.F.: Resonances of a forced mathieu equation with reference to wind turbine blades. ASME J. Vib. Acoust. 134(6), 064501 (2012)

    Google Scholar 

  44. Ramakrishnan, V., Feeny, B.F.: In-plane nonlinear dynamics of wind turbine blades. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2011). https://doi.org/10.1115/DETC2011-48219

  45. Ramakrishnan, V., Feeny, B.F.: Out-of-plane nonlinear dynamic analysis of wind turbine blades. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2014). https://doi.org/10.1115/DETC2014-35444

  46. Acar, G., Acar, M.A., Feeny, B.F.: In-plane blade-hub dynamics in horizontal-axis wind-turbines. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2016). https://doi.org/10.1115/DETC2016-60344

  47. Invernizzi, D., Dozio, L.: A fully consistent linearized model for vibration analysis of rotating beams in the framework of geometrically exact theory. J. Sound Vib. 370, 351–371 (2016)

    Google Scholar 

  48. Takabatake, H.: Effect of dead loads on natural frequencies of beams. J. Struct. Eng. ASCE 117(4), 1039–1052 (1991)

    Google Scholar 

  49. Ghayesh, M.H., Arnabili, M.: Coupled longitudinal-transverse behaviour of a geometrically imperfect microbeam. Compos. Part B Eng. 60, 371–377 (2014)

    Google Scholar 

  50. Oz, H.R., Pakdemirli, M.: Two-to-one internal resonances in a shallow curved beam resting on an elastic foundation. Acta Mech. 185(3–4), 245–260 (2006)

    MATH  Google Scholar 

  51. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant Nos. 11702033 and 11572182), the Fundamental Research Funds for the Central Universities (Grant No. 300102128107) and Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-09-E00019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Ding, H. & Chen, LQ. Super-harmonic resonances of a rotating pre-deformed blade subjected to gas pressure. Nonlinear Dyn 98, 2531–2549 (2019). https://doi.org/10.1007/s11071-019-05367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05367-x

Keywords

Navigation