Skip to main content
Log in

An image encryption scheme based on a new hybrid chaotic map and optimized substitution box

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new hybrid chaotic map and a different way of using optimization technique to improve the performance of encryption algorithms. Compared to other chaotic functions, the proposed chaotic map establishes an excellent randomness performance and sensitivity. Based on its Lyapunov exponents and entropy measure, the characteristics of the new mathematical function are better than those of classical maps. We propose a new image cipher based on confusion/diffusion Shannon properties. The substitution phase of the proposed encryption algorithm, which depends on a new optimized substitution box, was carried out by chaotic Jaya optimization algorithm to generate S-boxes according to their nonlinearity score. The goal of the optimization process is to have a bijective matrix with high nonlinearity score. Furthermore, a dynamic key depending on the output of encrypted image is proposed. Security analysis indicates that the proposed encryption scheme can withstand different crypt analytics attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adams, C., Tavares, S.: The structured design of cryptographically good s-boxes. J. Cryptol. 3(1), 27–41 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Alawida, M., Samsudin, A., Teh, J.S., Alkhawaldeh, R.S.: A new hybrid digital chaotic system with applications in image encryption. Signal Process. 160, 45–58 (2019)

    Google Scholar 

  3. AlShaikh, M., Laouamer, L., Nana, L., Pascu, A.C.: Efficient and robust encryption and watermarking technique based on a new chaotic map approach. Multimed. Tools Appl. 76(6), 8937–8950 (2017)

    Google Scholar 

  4. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Arnol’d, V.I., Avez, A.: Ergodic problems of classical mechanics. Math. Phys Monogr. Ser. 9, 15–35 (1968)

    MATH  Google Scholar 

  6. Artiles, J.A., Chaves, D.P., Pimentel, C.: Image encryption using block cipher and chaotic sequences. Signal Process. Image Commun. 79, 24–31 (2019)

    Google Scholar 

  7. Asgari-Chenaghlu, M., Balafar, M.A., Feizi-Derakhshi, M.R.: A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation. Signal Process. 157, 1–13 (2019)

    Google Scholar 

  8. Baptista, M.: Cryptography with chaos. Physics Lett. A 240(1–2), 50–54 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Barboza, R.: Dynamics of a hyperchaotic lorenz system. Int. J. Bifurc. Chaos 17(12), 4285–4294 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Bassham III, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L., et al.: Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom number generators for cryptographic applications V-1, pp. 2–40 (2010)

  11. Belazi, A., El-Latif, A.A.A., Belghith, S.: A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process. 128, 155–170 (2016)

    Google Scholar 

  12. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Chen, C.H., Sheu, L.J., Chen, H.K., Chen, J.H., Wang, H.C., Chao, Y.C., Lin, Y.K.: A new hyper-chaotic system and its synchronization. Nonlinear Anal. Real World Appl. 10(4), 2088–2096 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Chen, G., Chen, Y., Liao, X.: An extended method for obtaining s-boxes based on three-dimensional chaotic baker maps. Chaos Solitons Fract. 31(3), 571–579 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3d chaotic cat maps. Chaos Solitons Fract. 21(3), 749–761 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Chen, Jx, Zhu, Zl, Fu, C., Zhang, Lb, Zhang, Y.: An image encryption scheme using nonlinear inter-pixel computing and swapping based permutation approach. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 294–310 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Cusick, T.W., Stanica, P.: Cryptographic Boolean functions and applications. Academic Press, Cambridge (2017)

    MATH  Google Scholar 

  18. Farah, A., Belazi, A.: A novel chaotic jaya algorithm for unconstrained numerical optimization. Nonlinear Dyn. 93(3), 1451–1480 (2018)

    Google Scholar 

  19. Goggin, M., Sundaram, B., Milonni, P.: Quantum logistic map. Phys. Rev. A 41(10), 5705 (1990)

    MathSciNet  Google Scholar 

  20. Guesmi, R., Farah, M.A.B., Kachouri, A., Samet, M.: A novel design of chaos based s-boxes using genetic algorithm techniques. In: 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA), pp. 678–684. IEEE (2014)

  21. Guesmi, R., Farah, M.A.B., Kachouri, A., Samet, M.: Hash key-based image encryption using crossover operator and chaos. Multimed. Tools Appl. 75(8), 4753–4769 (2016)

    MATH  Google Scholar 

  22. Guesmi, R., Farah, M.A.B., Kachouri, A., Samet, M.: A novel chaos-based image encryption using dna sequence operation and secure hash algorithm sha-2. Nonlinear Dyn. 83(3), 1123–1136 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Hamza, R., Yan, Z., Muhammad, K., Bellavista, P., Titouna, F.: A privacy-preserving cryptosystem for iot e-healthcare. Inf. Sci. (2019). https://doi.org/10.1016/j.ins.2019.01.070

    Article  Google Scholar 

  24. Hayat, U., Azam, N.A.: A novel image encryption scheme based on an elliptic curve. Signal Process. 155, 391–402 (2019)

    Google Scholar 

  25. Hua, Z., Zhou, Y.: Exponential chaotic model for generating robust chaos. IEEE Trans. Syst. Man. Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2932616

    Article  Google Scholar 

  26. Hua, Z., Zhou, Y., Pun, C.M., Chen, C.P.: 2d sine logistic modulation map for image encryption. Inf. Sci. 297, 80–94 (2015)

    Google Scholar 

  27. Jain, A., Rajpal, N.: A robust image encryption algorithm resistant to attacks using dna and chaotic logistic maps. Multimed. Tools Appl. 75(10), 5455–5472 (2016)

    Google Scholar 

  28. Jakimoski, G., Kocarev, L.: Block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst.-I 48 163, 169 (2002)

    MATH  Google Scholar 

  29. Kandar, S., Chaudhuri, D., Bhattacharjee, A., Dhara, B.C.: Image encryption using sequence generated by cyclic group. J. Inf. Secur. Appl. 44, 117–129 (2019)

    Google Scholar 

  30. Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3d chaotic map. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2943–2959 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Khan, M., Shah, T., Mahmood, H., Gondal, M.A., Hussain, I.: A novel technique for the construction of strong s-boxes based on chaotic lorenz systems. Nonlinear Dyn. 70(3), 2303–2311 (2012)

    MathSciNet  Google Scholar 

  32. Lambić, D.: Security analysis and improvement of the pseudo-random number generator based on quantum chaotic map. Nonlinear Dyn. 94(2), 1117–1126 (2018)

    MathSciNet  Google Scholar 

  33. Li, C., Lin, D., Feng, B., Lü, J., Hao, F.: Cryptanalysis of a chaotic image encryption algorithm based on information entropy. IEEE Access 6, 75834–75842 (2018)

    Google Scholar 

  34. Li, C., Lin, D., Lü, J., Hao, F.: Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE Multimed. 25(4), 46–56 (2018)

    Google Scholar 

  35. Li, C., Zhang, Y., Xie, E.Y.: When an attacker meets a cipher-image in 2018: a year in review. J. Inf. Secur. Appl. 48, 102–361 (2019)

    Google Scholar 

  36. Li, Y., Chen, G., Tang, W.K.S.: Controlling a unified chaotic system to hyperchaotic. IEEE Trans. Circuits Syst. II Express Briefs 52(4), 204–207 (2005)

    Google Scholar 

  37. Liu, H., Kadir, A., Gong, P.: A fast color image encryption scheme using one-time s-boxes based on complex chaotic system and random noise. Opt. Commun. 338, 340–347 (2015)

    Google Scholar 

  38. Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59(10), 3320–3327 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Lü, J., Chen, G., Zhang, S.: Dynamical analysis of a new chaotic attractor. Int. J. Bifurc. chaos 12(05), 1001–1015 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Luo, Y., Tang, S., Liu, J., Cao, L., Qiu, S.: Image encryption scheme by combining the hyper-chaotic system with quantum coding. Opt. Lasers Eng. 124, 105–836 (2020)

    Google Scholar 

  41. Murillo-Escobar, M., Cruz-Hernández, C., Cardoza-Avendaño, L., Méndez-Ramírez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2017)

    MathSciNet  Google Scholar 

  42. Özkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 92(2), 305–313 (2018)

    Google Scholar 

  43. Özkaynak, F., Özer, A.B.: A method for designing strong s-boxes based on chaotic lorenz system. Phys. Lett. A 374(36), 3733–3738 (2010)

    MATH  Google Scholar 

  44. Persohn, K., Povinelli, R.J.: Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos Solitons Fract. 45(3), 238–245 (2012)

    Google Scholar 

  45. Ramasubramanian, K., Sriram, M.: A comparative study of computation of lyapunov spectra with different algorithms. Physica D 139(1–2), 72–86 (2000)

    MathSciNet  MATH  Google Scholar 

  46. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    MathSciNet  MATH  Google Scholar 

  47. Tam, L.M., Tou, W.M.S.: Parametric study of the fractional-order Chen-Lee system. Chaos Solitons Fract. 37(3), 817–826 (2008)

    Google Scholar 

  48. Tang, G., Liao, X., Chen, Y.: A novel method for designing s-boxes based on chaotic maps. Chaos Solitons Fract. 23(2), 413–419 (2005)

    MATH  Google Scholar 

  49. Tang, Y., Wang, Z., Fang, Ja: Image encryption using chaotic coupled map lattices with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2456–2468 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Wang, X., Liu, L., Zhang, Y.: A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt. Lasers Eng. 66, 10–18 (2015)

    Google Scholar 

  51. Wang, X., Teng, L., Qin, X.: A novel colour image encryption algorithm based on chaos. Sig. Process. 92(4), 1101–1108 (2012)

    MathSciNet  Google Scholar 

  52. Wang, X., Wang, M.: A hyperchaos generated from lorenz system. Physica A 387(14), 3751–3758 (2008)

    MathSciNet  Google Scholar 

  53. Wang, X.Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62(3), 615–621 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Wong, K.W., Kwok, B.S.H., Law, W.S.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372(15), 2645–2652 (2008)

    MATH  Google Scholar 

  55. Xu, L., Li, Z., Li, J., Hua, W.: A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 78, 17–25 (2016)

    Google Scholar 

  56. Ye, G., Huang, X.: An efficient symmetric image encryption algorithm based on an intertwining logistic map. Neurocomputing 251, 45–53 (2017)

    Google Scholar 

  57. Ye, G., Pan, C., Huang, X., Mei, Q.: An efficient pixel-level chaotic image encryption algorithm. Nonlinear Dyn. 94(1), 745–756 (2018)

    Google Scholar 

  58. Zhang, W., Yu, H., Zhao, Yl, Zhu, Zl: Image encryption based on three-dimensional bit matrix permutation. Sig. Process. 118, 36–50 (2016)

    Google Scholar 

  59. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Zhou, Q., Wong, Kw, Liao, X., Xiang, T., Hu, Y.: Parallel image encryption algorithm based on discretized chaotic map. Chaos Solitons Fract. 38(4), 1081–1092 (2008)

    Google Scholar 

  61. Zhou, Y., Hua, Z., Pun, C.M., Chen, C.P.: Cascade chaotic system with applications. IEEE Trans. Cybern. 45(9), 2001–2012 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions that enhanced the content and the form of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ben Farah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farah, M.A.B., Farah, A. & Farah, T. An image encryption scheme based on a new hybrid chaotic map and optimized substitution box. Nonlinear Dyn 99, 3041–3064 (2020). https://doi.org/10.1007/s11071-019-05413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05413-8

Keywords

Navigation